Formulas

\bgroup\color{black}$\hbar = 1.05 \times 10^{-27} \mathrm{erg\; sec}$\egroup \bgroup\color{black}$c = 3.00 \times 10^{10} \mathrm{cm/sec}$\egroup \bgroup\color{black}$e = 1.602 \times 10^{-19} \mathrm{Coulomb}$\egroup
\bgroup\color{black}$1 eV = 1.602 \times 10^{-12} \mathrm{erg}$\egroup \bgroup\color{black}$\alpha = {e^2\over \hbar c} = {1\over 137} = {e^2\over 4\pi\epsilon_0\hbar c} \mathrm{(SI)}$\egroup \bgroup\color{black}$\hbar c = 1973 \mathrm{eV\; \AA} = 197.3 \mathrm{MeV\; F}$\egroup
\bgroup\color{black}$1 \mathrm{\AA} = 1.0 \times 10^{-8} \mathrm{cm}$\egroup \bgroup\color{black}$1 \mathrm{Fermi} = 1.0 \times 10^{-13} \mathrm{cm}$\egroup \bgroup\color{black}$a_0 = {\hbar\over \alpha m_e c} = 0.529 \times 10^{-8} \mathrm{cm}$\egroup
\bgroup\color{black}$m_p = 938.3 \mathrm{MeV}/c^2$\egroup \bgroup\color{black}$m_n = 939.6 \mathrm{MeV}/c^2$\egroup \bgroup\color{black}$m_e = 9.11 \times 10^{-28} \mathrm{g} = 0.511 \mathrm{MeV}/c^2$\egroup
\bgroup\color{black}$k_B = 1.38 \times 10^{-16} \mathrm{erg}/^{\circ} \mathrm{K}$\egroup \bgroup\color{black}$g_e = 2 + {\alpha\over\pi}$\egroup \bgroup\color{black}$g_p = 5.6$\egroup
\bgroup\color{black}$\mu_{Bohr} = {e\hbar\over 2m_e c} = 0.579 \times 10^{-8} \mathrm{eV/gauss}$\egroup \bgroup\color{black}$\int\limits_{-\infty}^\infty dx\; f(x)\; \delta(g(x))=\left[{1\over \vert{dg\over dx}\vert}f(x)\right]_{g(x)=0}$\egroup
\bgroup\color{black}$\int\limits_{-\infty}^\infty dx\; f(x)\; \delta(x-a)=f(a)$\egroup \bgroup\color{black}$\int\limits_{-\infty}^{\infty}\; dx\; e^{-ax^2} = \sqrt{\pi\over a}$\egroup use \bgroup\color{black}${\partial\over\partial a}$\egroup for other forms
\bgroup\color{black}$e^A=\sum\limits_{n=0}^\infty {A^n\over n!}$\egroup \bgroup\color{black}$\sin\theta= \sum\limits_{n=1,3,5...}^\infty {\theta^n\over n!}(-1)^{{n-1\over 2}}$\egroup \bgroup\color{black}$\cos\theta= \sum\limits_{n=0,2,4...}^\infty {\theta^n\over n!}(-1)^{{n\over 2}}$\egroup
\bgroup\color{black}$P(x)={1\over\sqrt{2\pi\sigma^2}}e^{-x^2/2\sigma^2}$\egroup \bgroup\color{black}$\int\limits_0^\infty dr\; r^n e^{-ar}={n!\over a^{n+1}}$\egroup \bgroup\color{black}$E=\sqrt{m^2c^4+p^2c^2}$\egroup

GENERAL WAVE MECHANICS
\bgroup\color{black}$E=h\nu=\hbar\omega$\egroup                 Ref. \bgroup\color{black}$\lambda = h/p$\egroup                 Ref. \bgroup\color{black}$p=\hbar k$\egroup
\bgroup\color{black}$\Delta p\; \Delta x \geq {\hbar\over 2}$\egroup                 Ref. \bgroup\color{black}$\Delta A\; \Delta B \geq \langle{i\over 2} [A,B]\rangle$\egroup                 Ref. \bgroup\color{black}$\Delta A=\sqrt{\langle A^2\rangle-\langle A\rangle^2}$\egroup
\bgroup\color{black}$\psi (x) = {1\over\sqrt{2\pi \hbar}}
\int\limits_{-\infty}^{\infty}dp\; \phi (p)\; e^{ipx/\hbar}$\egroup                 Ref. \bgroup\color{black}$\phi (p) = {1\over\sqrt{2\pi \hbar}}
\int\limits_{-\infty}^{\infty}dx\; \psi (x)\; e^{-ipx/\hbar}$\egroup
\bgroup\color{black}$p_{op} = {\hbar\over i}{\partial\over \partial x}$\egroup                 Ref. \bgroup\color{black}$E_{op} = i\hbar {\partial\over \partial t}$\egroup                 Ref. \bgroup\color{black}$x_{op} = i\hbar {\partial\over \partial p}$\egroup                 Ref.
\bgroup\color{black}$Hu_j(x)=E_ju_j(x)$\egroup \bgroup\color{black}$\psi_j(x,t)=u_j(x)e^{-iE_jt/\hbar}$\egroup                 Ref. \bgroup\color{black}${-\hbar^2\over 2m}{\partial^2\psi\over\partial x^2}+V(x)\psi=i\hbar{\partial\psi\over\partial t}$\egroup
\bgroup\color{black}$\psi(x)$\egroup continuous \bgroup\color{black}${d\psi\over dx}$\egroup continous if \bgroup\color{black}$V$\egroup finite                 Ref.
\bgroup\color{black}$\Delta{d\psi\over dx}={2m\lambda\over\hbar^2}\psi(a)$\egroup for \bgroup\color{black}$V(x)=\lambda\delta(x-a)$\egroup                 Ref.
\bgroup\color{black}$\langle\phi\vert\psi\rangle=\int\limits_{-\infty}^\infty dx \phi^*(x)\psi(x)$\egroup \bgroup\color{black}$\langle u_i\vert u_j\rangle=\delta_{ij}$\egroup                 Ref. \bgroup\color{black}$\sum\limits_i\vert u_i\rangle\langle u_i\vert=1$\egroup                 Ref.
\bgroup\color{black}$\phi=\sum\limits_ia_iu_i$\egroup \bgroup\color{black}$a_i=\langle u_i\vert\phi\rangle$\egroup \bgroup\color{black}$\psi(x)=\langle x\vert\psi\rangle$\egroup                 Ref.
\bgroup\color{black}$\langle\phi\vert A\vert\psi\rangle=
\langle\phi\vert A\psi...
...\dagger\phi\vert\psi\rangle=\langle\psi\vert A^\dagger\vert\phi\rangle^*$\egroup                 Ref. \bgroup\color{black}$\phi(p)=\langle p\vert\psi\rangle$\egroup                 Ref.
\bgroup\color{black}$\lbrack{1\over 2m}(\vec{p}+{e\over c}\vec{A})^2 +
V(\vec{r})\rbrack \psi(\vec{r}) = E \psi(\vec{r})$\egroup \bgroup\color{black}$H\psi=E\psi$\egroup                 Ref.
\bgroup\color{black}$[p_x,x]={\hbar\over i}$\egroup \bgroup\color{black}$[L_x,L_y] = i \hbar L_z$\egroup \bgroup\color{black}$[L^2,L_z] = 0$\egroup
\bgroup\color{black}$\psi_i=\langle u_i\vert\psi\rangle$\egroup                 Ref. \bgroup\color{black}$A_{ij}=\langle u_i\vert A\vert u_j\rangle$\egroup                 Ref. \bgroup\color{black}${d\langle A\rangle \over dt}=
\langle {\partial A\over \partial t}\rangle +{i\over \hbar}\langle [H,A]\rangle $\egroup                 Ref.

HARMONIC OSCILLATOR
\bgroup\color{black}$H = {p^2\over 2m}+{1\over2}m\omega^2x^2
= \hbar\omega A^\dagger A + {1\over 2}\hbar\omega$\egroup                 Ref. \bgroup\color{black}$E_n = (n + {1\over 2}) \hbar \omega \quad n=0,1,2...$\egroup Ref.
\bgroup\color{black}$u_n(x)=\sum\limits_{k=0}^\infty a_ky^ke^{-y^2/2}$\egroup \bgroup\color{black}$a_{k+2}={2(k-n)\over (k+1)(k+2)}a_k$\egroup \bgroup\color{black}$y=\sqrt{m\omega\over\hbar}x$\egroup
\bgroup\color{black}$A = (\sqrt{m\omega\over 2\hbar} x + i {p\over\sqrt{2 m \hbar\omega}})$\egroup \bgroup\color{black}$A^\dagger = (\sqrt{m\omega\over 2\hbar} x - i {p\over\sqrt{2 m \hbar\omega}})$\egroup \bgroup\color{black}$[A,A^\dagger] = 1$\egroup
\bgroup\color{black}$A^\dagger\; \vert n\rangle = \sqrt{(n+1)}\; \vert n+1\rangle$\egroup \bgroup\color{black}$A\; \vert n\rangle = \sqrt{(n)}\; \vert n-1\rangle$\egroup \bgroup\color{black}$u_0 (x) = ({m\omega\over \hbar \pi})^{1\over 4}\;
e^{-m\omega x^2/2\hbar}$\egroup

ANGULAR MOMENTUM
\bgroup\color{black}$[L_i,L_j]=i\hbar\epsilon_{ijk}L_k$\egroup                 Ref. \bgroup\color{black}$[L^2,L_i]=0$\egroup \bgroup\color{black}$\int Y_{\ell m}^* Y_{\ell' m'} d\Omega=\delta_{\ell\ell'}\delta_{mm'}$\egroup
\bgroup\color{black}$L^2 Y_{\ell m} = \ell (\ell +1)\hbar^2 Y_{\ell m}$\egroup \bgroup\color{black}$L_z Y_{\ell m} = m\hbar Y_{\ell m}$\egroup \bgroup\color{black}$-\ell\leq m\leq\ell$\egroup                 Ref.
\bgroup\color{black}$L_\pm=L_x\pm iL_y$\egroup \bgroup\color{black}$L_\pm Y_{\ell m} = \hbar \sqrt{\ell (\ell +1) - m(m\pm 1)}\; Y_{\ell ,m\pm 1}$\egroup
\bgroup\color{black}$Y_{00}={1\over\sqrt{4\pi}}$\egroup                 Ref. \bgroup\color{black}$Y_{11} = -\sqrt{3\over 8\pi}\; e^{i\phi}\; \sin\theta$\egroup \bgroup\color{black}$Y_{10} = \sqrt{3\over 4\pi}\; \cos\theta$\egroup
\bgroup\color{black}$Y_{22} = \sqrt{15\over 32\pi}\; e^{2i\phi}\; \sin^2\theta$\egroup \bgroup\color{black}$Y_{21} = -\sqrt{15\over 8\pi}\; e^{i\phi}\; \sin\theta \cos\theta$\egroup \bgroup\color{black}$Y_{20} = \sqrt{5\over 16\pi}\; (3 \cos^2\theta-1)$\egroup
\bgroup\color{black}$Y_{\ell\ell} = e^{i\ell\phi}\; \sin^\ell \theta$\egroup \bgroup\color{black}$Y_{\ell(-m)}=(-1)^m Y_{\ell m}^*$\egroup \bgroup\color{black}$Y_{\ell m}(\pi -\theta ,\phi +\pi) = (-1)^\ell \; Y_{\ell m}(\theta ,\phi )$\egroup
\bgroup\color{black}${-\hbar^2\over 2\mu}\left[{\partial^2\over\partial r^2}+{2\...
...r)+{\ell(\ell+1)\hbar^2\over 2\mu
r^2}\right)R_{n\ell}(r)=ER_{n\ell}(r)$\egroup                 Ref.
\bgroup\color{black}$j_0(kr)={\sin(kr)\over kr}$\egroup                 Ref. \bgroup\color{black}$n_0(kr)=-{\cos(kr)\over kr}$\egroup \bgroup\color{black}$h_\ell^{(1)}(kr)=j_\ell(kr)+in_\ell(kr)$\egroup
\bgroup\color{black}$H = H_0 - \vec{\mu} \cdot \vec{B}$\egroup                 Ref. \bgroup\color{black}$\vec{\mu} = {e\over 2mc}\vec{L}$\egroup \bgroup\color{black}$\vec{\mu} = {ge\over 2mc}\vec{S}$\egroup
\bgroup\color{black}$S_i = {\hbar\over 2} \sigma_i$\egroup \bgroup\color{black}$[\sigma_i,\sigma_j]=2i\epsilon_{ijk}\sigma_k$\egroup \bgroup\color{black}$\{\sigma_i,\sigma_j\}=0$\egroup
\bgroup\color{black}$\sigma_x = \pmatrix{0 &1\cr 1 &0\cr}$\egroup \bgroup\color{black}$\sigma_y = \pmatrix{0 &-i\cr i &0\cr}$\egroup \bgroup\color{black}$\sigma_z = \pmatrix{1 &0\cr 0 &-1\cr}$\egroup                 Ref.
\bgroup\color{black}$S_x=\hbar\pmatrix{0&{1\over \sqrt{2}}&0 \cr
{1\over \sqrt{2}}&0&{1\over \sqrt{2}} \cr
0&{1\over \sqrt{2}}&0}$\egroup \bgroup\color{black}$S_y=\hbar\pmatrix{0&{-i\over \sqrt{2}}&0 \cr
{i\over \sqrt{2}}&0&{-i\over \sqrt{2}} \cr
0&{i\over \sqrt{2}}&0}$\egroup \bgroup\color{black}$S_z=\hbar\pmatrix{1&0&0\cr 0&0&0\cr 0&0&-1}$\egroup                 Ref.

HYDROGEN ATOM
\bgroup\color{black}$H = {p^2\over 2\mu}-{Ze^2\over r}$\egroup \bgroup\color{black}$\psi_{n\ell m} = R_{n\ell}(r) Y_{\ell m}(\theta,\phi)$\egroup \bgroup\color{black}$E_n = -{Z^2 \alpha^2 \mu c^2\over 2 n^2}=-{13.6\over n^2}$\egroup eV
\bgroup\color{black}$n=n_r+\ell+1$\egroup                 Ref. \bgroup\color{black}$a_0={\hbar\over\alpha\mu c}$\egroup \bgroup\color{black}$\ell=0,1,...,n-1$\egroup
\bgroup\color{black}$R_{n\ell}(\rho)=\rho^\ell\sum\limits_{k=0}^\infty a_k\rho^k e^{-\rho/2}$\egroup \bgroup\color{black}$a_{k+1}={k+\ell+1-n\over (k+1)(k+2\ell+2)}a_k$\egroup         Ref. \bgroup\color{black}$\rho=\sqrt{-8\mu E\over\hbar^2}r={2r\over na_0}$\egroup
\bgroup\color{black}$R_{10} = 2({Z\over a_0})^{3\over 2}\; e^{-Zr\over a_0}$\egroup                 Ref. \bgroup\color{black}$R_{20} = 2({Z\over 2a_0})^{3\over 2} (1-{Zr\over 2a_0})\;e^{-Zr\over 2a_0}$\egroup \bgroup\color{black}$R_{21} = {1\over\sqrt 3}({Z\over 2a_0})^{3\over 2} ({Zr\over a_0})\;e^{-Zr\over 2a_0}$\egroup
\bgroup\color{black}$R_{n,n-1}\; \propto\; r^{n-1}\; e^{-Zr/na_0}$\egroup \bgroup\color{black}$\mu = {m_1 m_2\over m_1 + m_2}$\egroup                 Ref. \bgroup\color{black}$\langle\psi_{n\ell m}\vert{e^2\over r}\vert\psi_{n\ell m}\rangle={Ze^2\over n^2a_0}={Z\alpha^2\mu c^2\over n^2}$\egroup
\bgroup\color{black}$H_1=-{p^4\over 8m^3c^2}$\egroup                 Ref. \bgroup\color{black}$H_2={e^2\over 2m^2c^2r^3}\vec{S}\cdot\vec{L}$\egroup                 Ref. \bgroup\color{black}$\Delta E_{12}=-{1\over 2n^3}\alpha^4mc^2\left({1\over j+{1\over 2}}-{3\over 4n}\right)$\egroup         Ref.
\bgroup\color{black}$H_3={-e^2g_p\over 3mM_pc^2}\vec{S}\cdot\vec{I}\delta({r})$\egroup \bgroup\color{black}$\Delta E_{3}={2g_pm\alpha^4mc^2\over 3M_pn^3}(f(f+1)-I(I+1)-{3\over 4})$\egroup                 Ref.
\bgroup\color{black}$H_B={eB\over 2mc}(L_z+2S_z)$\egroup                 Ref. \bgroup\color{black}$\Delta E_B={e\hbar B\over 2mc}(1\pm {1\over 2\ell +1})m_j$\egroup for \bgroup\color{black}$j=\ell\pm{1\over 2}$\egroup

ADDITION OF ANGULAR MOMENTUM
\bgroup\color{black}$\vec{J} = \vec{L}+\vec{S}$\egroup \bgroup\color{black}$\vert\ell -s\vert \leq j \leq \ell +s$\egroup                 Ref. \bgroup\color{black}$\vec{L\cdot S}={1\over 2}(J^2-L^2-S^2)$\egroup
\bgroup\color{black}$\psi_{jm_j\ell s}=
\sum\limits_{m_\ell m_s}\langle j m_j \ell s\vert\ell m_\ell s
m_s\rangle Y_{\ell m_\ell}\chi_{sm_s}$\egroup                 Ref.
\bgroup\color{black}$\psi_{j,m_j}=\psi_{\ell +{1\over 2},m+{1\over 2}}=
\sqrt{\...
...ell +1}Y_{\ell m}\chi_+ +\sqrt{\ell -m\over 2\ell +1}Y_{\ell ,m+1}\chi_-$\egroup                 Ref. for \bgroup\color{black}$s={1\over 2}$\egroup and any \bgroup\color{black}$\ell$\egroup
\bgroup\color{black}$\psi_{j,m_j}=\psi_{\ell -{1\over 2},m+{1\over 2}}=
\sqrt{\...
... +1}Y_{\ell m}\chi_+ -\sqrt{\ell +m+1\over 2\ell +1 }Y_{\ell ,m+1}\chi_-$\egroup for \bgroup\color{black}$s={1\over 2}$\egroup and any \bgroup\color{black}$\ell$\egroup

PERTURBATION THEORY AND RADIATIVE DECAYS
\bgroup\color{black}$E_n^{(1)}=\langle \phi_n\vert H_1\vert\phi_n\rangle $\egroup                 Ref. \bgroup\color{black}$E_n^{(2)}=\sum\limits_{k\neq n}{\vert\langle \phi_k\vert H_1\vert\phi_n\rangle \vert^2\over
E_n^{(0)}-E_k^{(0)}}$\egroup \bgroup\color{black}$c_{nk}^{(1)}={\langle \phi_k\vert H_1\vert\phi_n\rangle \over E_n^{(0)}-E_k^{(0)}}$\egroup
\bgroup\color{black}$c_n(t) = {1\over i\hbar} \int\limits_{0}^{t}\; dt'\;
e^{i(E_n-E_i)t'/\hbar}\langle \phi_n\vert V(t')\vert\phi_i\rangle $\egroup                 Ref.
Fermi's Golden Rule: \bgroup\color{black}$\Gamma_{i\rightarrow f}={2\pi\over\hbar}\vert\langle \psi_f\vert V\vert\psi_i\rangle \vert^2\rho_f(E)$\egroup                 Ref.
\bgroup\color{black}$\Gamma_{i\rightarrow f} =
{2\pi\over \hbar} \int\; \prod\l...
...({Vd^3{p_k}\over \rm (2\pi \hbar)^3})
\;\vert M_{fi}\vert^2\; \delta^3($\egroupmomentum conservation \bgroup\color{black}$)
\; \delta $\egroup(Energy conservation)
\bgroup\color{black}$\Gamma^{rad}_{m\rightarrow k} =
{\alpha\over 2\pi m^2c^2}\...
...t\vec{r}}\vec{\epsilon}^{(\lambda)}\cdot\vec{p}\vert\phi_k\rangle\vert^2$\egroup                 Ref.
\bgroup\color{black}$\Gamma^{E1}_{m\rightarrow k} =
{\alpha\over 2\pi c^2}\sum\...
...i_m\vert\vec{\epsilon}^{(\lambda)}\cdot\vec{r}\vert\phi_k\rangle \vert^2$\egroup                 Ref. \bgroup\color{black}$\Delta l=\pm 1$\egroup, \bgroup\color{black}$\Delta s=0$\egroup
\bgroup\color{black}$\hat{\epsilon}\cdot \hat{r}=\sqrt{4\pi\over 3}(\epsilon_zY_...
...ilon_y\over\sqrt{2}}Y_{11}+{\epsilon_x+i\epsilon_y\over\sqrt{2}}Y_{1-1})$\egroup \bgroup\color{black}$\vec{\epsilon}\cdot\vec{k}=0$\egroup
\bgroup\color{black}$I(\omega)\propto{\Gamma/2\over (\omega-\omega_0)^2+(\Gamma/2)^2}$\egroup                 Ref. \bgroup\color{black}$\Gamma_{collision}=P\sigma\sqrt{3\over mkT}$\egroup \bgroup\color{black}$({\Delta\omega\over\omega})_{Dopler}=\sqrt{kT\over mc^2}$\egroup
\bgroup\color{black}$\Gamma_{tot}={4\alpha\omega_{in}^3\over 3c^2}\left\{\matrix...
...\qquad \mathrm{ for}\qquad \ell'=\left\{\matrix{\ell+1\cr \ell-1}\right.$\egroup                 Ref.
\bgroup\color{black}$({d\sigma\over d\Omega})_{BORN}={1\over 4\pi^2 \hbar^4}{p_f\over p_i}m_f m_i
\vert{\tilde V}(\vec{\Delta}$\egroup \bgroup\color{black}$)\vert^2$\egroup \bgroup\color{black}${\tilde V}(\vec{\Delta}$\egroup \bgroup\color{black}$) = \int \; d^3 \vec{r}\;e^{-i \vec{\Delta}\cdot\vec{r}}\;V(\vec{r}$\egroup \bgroup\color{black}$)$\egroup \bgroup\color{black}$\vec{\Delta}={\vec{p_f}-\vec{p_i}\over\hbar}$\egroup                 Ref.

ELECTRICITY AND MAGNETISM
\bgroup\color{black}$\vec{\nabla}\cdot\vec{B} = 0$\egroup \bgroup\color{black}$\vec{\nabla}\times\vec{E}+{1\over c}{\partial \vec{B}\over\partial t}=0$\egroup \bgroup\color{black}$\vec{\nabla}\cdot\vec{E}=4\pi\rho$\egroup
\bgroup\color{black}$\vec{\nabla}\times\vec{B}-{1\over c}{\partial \vec{E}\over\partial t}={4\pi\over c}\vec{J}$\egroup \bgroup\color{black}$\vec{F}=-e(\vec{E}+{1\over c}\vec{v}\times\vec{B})$\egroup \bgroup\color{black}$H={p^2\over 2m}\rightarrow{1\over 2m}\left(\vec{p}+{e\over c}\vec{A}\right)^2-e\phi$\egroup
\bgroup\color{black}$\vec{B}=\vec{\nabla}\times \vec{A}$\egroup \bgroup\color{black}$\vec{E}=-\vec{\nabla}\phi-{1\over c}{\partial \vec{A}\over\partial t}$\egroup \bgroup\color{black}$-\nabla^2\phi-{1\over c}{\partial\over\partial t}(\vec{\nabla}\cdot\vec{A})=4\pi\rho$\egroup
\bgroup\color{black}$\psi(\vec{r},t) \to e^{i\lambda(\vec{r},t)}\psi(\vec{r},t)$\egroup \bgroup\color{black}$\vec{A} \to \vec{A}-\vec{\nabla}f(\vec{r},t)$\egroup \bgroup\color{black}$-\nabla^2\vec{A}+{1\over c^2}{\partial^2\vec{A}\over\partia...
...A}+{1\over c}{\partial\phi\over\partial t}\right)
={4\pi\over c}\vec{J}$\egroup
\bgroup\color{black}$\phi \to \phi+{1\over c}{\partial f(\vec{r},t)\over\partial t}$\egroup \bgroup\color{black}$f(\vec{r},t) = {\hbar c\over e}\lambda(\vec{r},t)$\egroup
\bgroup\color{black}${-\hbar^2\over 2m}\nabla^2\psi+{e\over 2mc}\vec{B}\cdot\vec...
...er 8mc^2}
\left(r^2B^2-(\vec{r}\cdot\vec{B})^2\right)\psi=(E+e\phi)\psi$\egroup

ATOMS AND MOLECULES
Hund: 1) max \bgroup\color{black}$s$\egroup 2)max \bgroup\color{black}$\ell$\egroup (allowed) 3) min \bgroup\color{black}$j$\egroup \bgroup\color{black}$(\leq {1\over 2}$\egroup shell) else max \bgroup\color{black}$j$\egroup
\bgroup\color{black}$E_{rot}={\ell (\ell +1)\hbar^2\over 2I}\approx {1\over 2000}$\egroup eV \bgroup\color{black}$E_{vib}=(n+{1\over 2})\hbar\omega\approx {1\over 50}$\egroup eV

Branson 2008-12-22