The Anomalous Zeeman Effect

We compute the energy change due to a weak magnetic field using first order Perturbation Theory.


\begin{displaymath}\bgroup\color{black}\left<\psi_{n\ell jm_j}\left\vert{eB\over{2mc}}(L_z+2S_z)\right\vert\psi_{n\ell jm_j}\right>\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}(L_z+2S_z)=J_z+S_z\egroup\end{displaymath}

The \bgroup\color{black}$J_z$\egroup part is easy since we are in eigenstates of that operator.

\begin{displaymath}\bgroup\color{black}\left<\psi_{n\ell jm_j}\left\vert{eB\over...
...\vert\psi_{n\ell jm_j}\right>
= {eB\over{2mc}}\hbar m_j\egroup\end{displaymath}

The \bgroup\color{black}$S_z$\egroup is harder since we are not in eigenstates of that one. We need \bgroup\color{black}$\left<\psi_{n\ell jm_j}\left\vert{eB\over{2mc}}S_z\right\vert\psi_{n\ell jm_j}\right>$\egroup, but we don't know how \bgroup\color{black}$S_z$\egroup acts on these. So, we must write \bgroup\color{black}$\left\vert\psi_{njm_j\ell s}\right>$\egroup in terms of \bgroup\color{black}$\left\vert\psi_{n\ell m_\ell sm_s}\right>$\egroup.

\begin{eqnarray*}
E^{(1)}_n &=& \left<\psi_{nj\ell m_j}\left\vert {eB\over{2mc}...
...l m_j}\left\vert S_z \right\vert \psi_{nj\ell m_j}\right>\right)
\end{eqnarray*}


We already know how to write in terms of these states of definite \bgroup\color{black}$m_\ell$\egroup and \bgroup\color{black}$m_s$\egroup.

\begin{eqnarray*}
\psi_{n(\ell+{1\over 2})\ell (m+{1\over 2})}
&=& \alpha Y_{\e...
...+1\over {2\ell + 1}} \\
\beta&=&\sqrt{\ell -m\over {2\ell + 1}}
\end{eqnarray*}


Let's do the \bgroup\color{black}$j=\ell+{1\over 2}$\egroup state first.

\begin{eqnarray*}
\left<\psi_{nj\ell m_j}\left\vert S_z\right\vert \psi_{nj\ell ...
...\over 2}\hbar\left(\alpha^2 -\beta^2\right)_{m=m_j -{1\over 2}}
\end{eqnarray*}


For \bgroup\color{black}$j=\ell-{1\over 2}$\egroup,

\begin{displaymath}\bgroup\color{black}\left<\psi_{nj\ell m_j}\left\vert S_z\rig...
...}\hbar\left(\beta^2 -\alpha^2\right)_{m=m_j -{1\over 2}}\egroup\end{displaymath}

We can combine the two formulas for \bgroup\color{black}$j=\ell\pm{1\over 2}$\egroup.

\begin{eqnarray*}
\left<\psi_{nj\ell m_j}\left\vert S_z\right\vert \psi_{nj\ell ...
...over 2})+1\over {2\ell + 1}}
= \pm {m_j \hbar\over{2\ell + 1}}
\end{eqnarray*}


So adding this to the (easier) part above, we have

\begin{displaymath}\bgroup\color{black} E^{(1)}_n ={eB\over {2mc}}\left(m_j\hbar...
...r B\over {2mc}}m_j \left(1\pm {1\over{2\ell +1}}\right) \egroup\end{displaymath}

for \bgroup\color{black}$j=\ell\pm{1\over 2}$\egroup.

In summary then, we rewrite the fine structure shift.

\begin{displaymath}\bgroup\color{black}\Delta E=-{1\over 2}mc^2\left(Z\alpha\rig...
...n^3}}\left[ {1\over{j+{1\over 2}}} -{3\over{4n}}\right].\egroup\end{displaymath}

To this we add the anomalous Zeeman effect

\begin{displaymath}\bgroup\color{black}\Delta E = {e\hbar B\over {2mc}}m_j \left(1\pm {1\over{2\ell +1}}\right).\egroup\end{displaymath}

Jim Branson 2013-04-22