Hyperfine Correction in Hydrogen

We start from the magnetic moment of the nucleus

\begin{displaymath}\bgroup\color{black}\vec{\mu}={Zeg_N\over 2M_Nc}\vec{I}.\egroup\end{displaymath}

Now we use the classical vector potential from a point dipole (see (green) Jackson page 147)

\begin{displaymath}\bgroup\color{black}\vec{A}(\vec{r})=-(\vec{\mu}\times\vec{\nabla}){1\over r}.\egroup\end{displaymath}

We compute the field from this.

\begin{displaymath}\bgroup\color{black}\vec{B}=\vec{\nabla}\times\vec{A}\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}B_k={\partial\over \partial x_i}A_j\epsil...
...r \partial x_n}(-\epsilon_{mnj}\epsilon_{ikj}){1\over r}\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}=-\mu_m{\partial\over \partial x_i}{\part...
...artial x_i}{\partial\over \partial x_k}\right){1\over r}\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\vec{B}=-\left(\vec{\mu}\nabla^2{1\over r}-\vec{\nabla}(\vec{\mu}\cdot\vec{\nabla}){1\over r}\right)\egroup\end{displaymath}

Then we compute the energy shift in first order perturbation theory for s states.

\begin{displaymath}\bgroup\color{black}\Delta E = \left<{e\over{m_ec}}\vec S\cdo...
...}}{\partial\over{\partial x_j}}{1\over r}\right>\right) \egroup\end{displaymath}

The second term can be simplified because of the spherical symmetry of s states. (Basically the derivative with respect to x is odd in x so when the integral is done, only the terms where \bgroup\color{black}$i=j$\egroup are nonzero).

\begin{displaymath}\bgroup\color{black}\int d^3r \vert\phi_{n00}(\vec{r})\vert...
... d^3r \vert\phi_{n00}(\vec{r})\vert^2\nabla^2{1\over r}\egroup\end{displaymath}

So we have

\begin{displaymath}\bgroup\color{black}\Delta E = -{2\over 3}{Ze^2g_N\over{2 m_eM_Nc^2}} \vec S\cdot\vec I\left<\nabla^2{1\over r}\right>. \egroup\end{displaymath}

Now working out the \bgroup\color{black}$\nabla^2$\egroup term in spherical coordinates,

\begin{displaymath}\bgroup\color{black}\left({\partial^2\over{\partial r^2}}+{2\...
...= {2\over {r^3}}+{2\over r}\left({-1\over{r^2}}\right)=0\egroup\end{displaymath}

we find that it is zero everywhere but we must be careful at \bgroup\color{black}$r=0$\egroup.

To find the effect at \bgroup\color{black}$r=0$\egroup we will integrate.

\begin{displaymath}\bgroup\color{black} \int\limits^\varepsilon_{r=0}\vec\nabla^...
...vec{dS} = \int {\partial\over{\partial r}}{1\over r} dS \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black} =\int\limits^\varepsilon_{r=0} {-1\over{...
... = (4\pi\varepsilon^2)({-1\over\varepsilon^2})
= -4\pi \egroup\end{displaymath}

So the integral is nonzero for any region including the origin, which implies

\begin{displaymath}\bgroup\color{black}\left(\nabla^2{1\over r}\right)=-4\pi\delta^3(\vec{r}).\egroup\end{displaymath}

We can now evaluate the expectation value.

\begin{displaymath}\bgroup\color{black}\Delta E = -{2\over 3}{Ze^2g_N\over{2 m_e...
...^2}} \vec S\cdot\vec I (-4\pi\vert\phi_{n00}(0)\vert^2) \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}4\pi\vert\phi_{n00}(0)\vert^2=\vert R_{n0...
...ert^2={4\over n^3}\left(Z\alpha m_ec\over\hbar\right)^3 \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\Delta E ={2\over 3}{Ze^2g_N\over{2 m_eM_...
...ec I
{4\over n^3}\left(Z\alpha m_ec\over\hbar\right)^3 \egroup\end{displaymath}

Simply writing the \bgroup\color{black}$e^2$\egroup in terms of \bgroup\color{black}$\alpha$\egroup and regrouping, we get

\begin{displaymath}\bgroup\color{black} \Delta E = {4\over 3} (Z\alpha)^4 \left(...
... g_N
{1\over{n^3}} {\vec{S}\cdot\vec{I}\over{\hbar^2}}. \egroup\end{displaymath}

We will sometimes group the constants such that

\begin{displaymath}\bgroup\color{black} \Delta E \equiv {{\cal A}\over\hbar^2} \vec{S}\cdot\vec{I}.\egroup\end{displaymath}

(The textbook has numerous mistakes in this section.)

Jim Branson 2013-04-22