Solving the HO Differential Equation *

The differential equation for the 1D Harmonic Oscillator is.

\begin{displaymath}\bgroup\color{black} {-\hbar^2\over 2m}{d^2u\over dx^2}+{1\over 2}m\omega^2x^2u = Eu .\egroup\end{displaymath}

By working with dimensionless variables and constants, we can see the basic equation and minimize the clutter. We use the energy in terms of \bgroup\color{black}$\hbar\omega$\egroup.

\begin{displaymath}\bgroup\color{black} \epsilon={2E\over \hbar\omega} \egroup\end{displaymath}

We define a dimensionless coordinate.

\begin{displaymath}\bgroup\color{black} y=\sqrt{m\omega\over\hbar}x \egroup\end{displaymath}

The equation becomes.

\begin{eqnarray*}
{d^2u\over dx^2}+{2m\over\hbar^2}(E-{1\over 2}m\omega^2x^2)u=0 \\
{d^2u\over dy^2}+(\epsilon-y^2)u=0\\
\end{eqnarray*}


(Its probably easiest to just check the above equation by substituting as below.

\begin{eqnarray*}
{\hbar\over m\omega}{d^2u\over dx^2}+\left({2E\over\hbar\omega...
...^2u\over dx^2}+{2m\over\hbar^2}(E-{1\over 2}m\omega^2x^2)u=0 \\
\end{eqnarray*}


It works.)

Now we want to find the solution for \bgroup\color{black}$y\rightarrow \infty$\egroup.

\begin{displaymath}\bgroup\color{black} {d^2u\over dy^2}+(\epsilon-y^2)u=0\egroup\end{displaymath}

becomes

\begin{displaymath}\bgroup\color{black} {d^2u\over dy^2}-y^2u=0\egroup\end{displaymath}

which has the solution (in the large \bgroup\color{black}$y$\egroup limit)

\begin{displaymath}\bgroup\color{black} u=e^{-y^2/2} .\egroup\end{displaymath}

This exponential will dominate a polynomial as \bgroup\color{black}$y\rightarrow \infty$\egroup so we can write our general solution as

\begin{displaymath}\bgroup\color{black} u(y)=h(y)e^{-y^2/2} \egroup\end{displaymath}

where \bgroup\color{black}$h(y)$\egroup is a polynomial.

Take the differential equation

\begin{displaymath}\bgroup\color{black} {d^2u\over dy^2}+(\epsilon-y^2)u=0\egroup\end{displaymath}

and plug

\begin{displaymath}\bgroup\color{black} u(y)=h(y)e^{-y^2/2} \egroup\end{displaymath}

into it to get

\begin{eqnarray*}
{d^2\over dy^2}h(y)e^{-y^2/2}+\epsilon h(y)e^{-y^2/2}-y^2h(y)e...
...\\
{d^2h(y)\over dy^2}-2y{dh(y)\over dy}+(\epsilon-1)h(y)=0 \\
\end{eqnarray*}


This is our differential equation for the polynomial \bgroup\color{black}$h(y)$\egroup.

Write \bgroup\color{black}$h(y)$\egroup as a sum of terms.

\begin{displaymath}\bgroup\color{black} h(y)=\sum\limits_{m=0}^\infty a_m y^m \egroup\end{displaymath}

Plug it into the differential equation.

\begin{displaymath}\bgroup\color{black}\sum\limits_{m=0}^\infty[ a_m (m)(m-1)y^{m-2}-2a_m(m)y^m+(\epsilon-1)a_my^m ]=0\egroup\end{displaymath}

We now want ot shift terms in the sum so that we see the coefficient of \bgroup\color{black}$y^m$\egroup. To do this, we will shift the term \bgroup\color{black}$a_m (m)(m-1)y^{m-2}$\egroup down two steps in the sum. It will now show up as \bgroup\color{black}$a_{m+2} (m+2)(m+1)y^m$\egroup.

\begin{displaymath}\bgroup\color{black} \sum\limits_{m=0}^\infty[ a_{m+2} (m+2)(m+1)-2a_m(m)+(\epsilon-1)a_m ]y^m=0\egroup\end{displaymath}

(Note that in doing this shift the first term for \bgroup\color{black}$m=0$\egroup and for \bgroup\color{black}$m=1$\egroup get shifted out of the sum. This is OK since \bgroup\color{black}$a_m (m)(m-1)y^{m-2}$\egroup is zero for \bgroup\color{black}$m=0$\egroup or \bgroup\color{black}$m=1$\egroup.)

For the sum to be zero for all \bgroup\color{black}$y$\egroup, each coefficient of \bgroup\color{black}$y^m$\egroup must be zero.

\begin{displaymath}\bgroup\color{black} a_{m+2} (m+2)(m+1)+(\epsilon-1-2m)a_m=0 \egroup\end{displaymath}

Solve for \bgroup\color{black}$a_{m+2}$\egroup

\begin{displaymath}\bgroup\color{black} a_{m+2}={2m+1-\epsilon\over (m+1)(m+2)}a_m \egroup\end{displaymath}

and we have a recursion relation giving us our polynomial.

But, lets see what we have. For large \bgroup\color{black}$m$\egroup,

\begin{displaymath}\bgroup\color{black} a_{m+2}={2m+1-\epsilon\over (m+1)(m+2)}a_m\rightarrow {2\over m} a_m \egroup\end{displaymath}

The series for

\begin{displaymath}\bgroup\color{black} y^2e^{y^2/2}=\sum{y^{2n+2}\over 2^nn!} \egroup\end{displaymath}

has the coefficient of \bgroup\color{black}$y^{2n+2}$\egroup equal to \bgroup\color{black}${1\over 2^nn!}$\egroup and the coefficient of \bgroup\color{black}$y^{2n}$\egroup equal to \bgroup\color{black}${1\over 2^{n-1}(n-1)!}$\egroup. If \bgroup\color{black}$m=2n$\egroup,

\begin{displaymath}\bgroup\color{black} a_{m+2}={1\over 2n}a_m={1\over m}a_m .\egroup\end{displaymath}

So our polynomial solution will approach \bgroup\color{black}$y^2e^{y^2/2}$\egroup and our overall solution will not be normalizable. (Remember \bgroup\color{black}$u(y)=h(y)e^{-y^2/2}$\egroup.) We must avoid this.

We can avoid the problem if the series terminates and does not go on to infinite \bgroup\color{black}$m$\egroup.

\begin{displaymath}\bgroup\color{black} a_{m+2}={2m+1-\epsilon\over (m+1)(m+2)}a_m \egroup\end{displaymath}

The series will terminate if

\begin{displaymath}\bgroup\color{black} \epsilon=2n+1 \egroup\end{displaymath}

for some value of \bgroup\color{black}$n$\egroup. Then the last term in the series will be of order \bgroup\color{black}$n$\egroup.

\begin{displaymath}\bgroup\color{black} a_{n+2}={0\over (n+1)(n+2)}a_n=0 \egroup\end{displaymath}

The acceptable solutions then satisfy the requirement

\begin{eqnarray*}
\epsilon={2E\over \hbar\omega}=2n+1 \\
E={(2n+1)\over 2}\hbar\omega=\left(n+{1\over 2}\right)\hbar\omega \\
\end{eqnarray*}


Again, we get quantized energies when we satisfy the boundary conditions at infinity.

The ground state wavefunction is particularly simple, having only one term.

\begin{displaymath}\bgroup\color{black} u_0(x)=a_0e^{-y^2\over 2}=a_0 e^{-m\omega x^2/2\hbar} \egroup\end{displaymath}

Lets find \bgroup\color{black}$a_0$\egroup by normalizing the wavefunction.

\begin{eqnarray*}
\int\limits_{-\infty}^\infty\vert a_0\vert^2 e^{-m\omega x^2/\...
...mega\over\pi\hbar}\right)^{1\over 4} e^{-m\omega x^2/2\hbar} \\
\end{eqnarray*}


Jim Branson 2013-04-22