Fourier Transform of Gaussian *

We wish to Fourier transform the Gaussian wave packet in (momentum) k-space \bgroup\color{black}$A(k)=\left({2\alpha\over\pi}\right)^{1/4}e^{-\alpha (k-k_0)^2}$\egroup to get \bgroup\color{black}$f(x)$\egroup in position space. The Fourier Transform formula is

\begin{displaymath}\bgroup\color{black}f(x)={1\over \sqrt{2\pi}}\left({2\alpha\o...
...mits_{-\infty}^\infty\; e^{-\alpha(k-k_0)^2} e^{ikx} dk.\egroup\end{displaymath}

Now we will transform the integral a few times to get to the standard definite integral of a Gaussian for which we know the answer. First,

\begin{displaymath}\bgroup\color{black}k'=k-k_0\egroup\end{displaymath}

which does nothing really since \bgroup\color{black}$dk'=dk$\egroup.

\begin{eqnarray*}
f(x)&=&\left({\alpha\over 2\pi^3}\right)^{1/4}e^{ik_0x}\int\li...
...}\int\limits_{-\infty}^\infty\; e^{-\alpha k'^2} e^{ik'x} dk'\\
\end{eqnarray*}


Now we want to complete the square in the exponent inside the integral. We plan a term like \bgroup\color{black}$e^{-\alpha k''^2}$\egroup so we define

\begin{displaymath}\bgroup\color{black}k''=k'-{ix\over 2\alpha}.\egroup\end{displaymath}

Again \bgroup\color{black}$dk''=dk'=dk$\egroup. Lets write out the planned exponent to see what we are missing.

\begin{displaymath}\bgroup\color{black}-\alpha\left(k'-{ix\over 2\alpha}\right)^2=-\alpha k'^2+ik'x+{x^2\over4\alpha}\egroup\end{displaymath}

We need to multiply by \bgroup\color{black}$e^{-{x^2\over4\alpha}}$\egroup to cancel the extra term in the completed square.

\begin{displaymath}\bgroup\color{black}f(x)=\left({\alpha\over 2\pi^3}\right)^{1...
...alpha(k'-{ix\over2\alpha})^2} e^{-{x^2\over4\alpha}} dk'\egroup\end{displaymath}

That term can be pulled outside the integral since it doesn't depend on \bgroup\color{black}$k$\egroup.

\begin{displaymath}\bgroup\color{black}f(x)=\left({\alpha\over 2\pi^3}\right)^{1...
...a}}\int\limits_{-\infty}^\infty\; e^{-\alpha k''^2} dk''\egroup\end{displaymath}

So now we have the standard Gaussian integral which just gives us \bgroup\color{black}$\sqrt{\pi\over\alpha}$\egroup.

\begin{eqnarray*}
f(x)&=&\left({\alpha\over 2\pi^3}\right)^{1/4}\sqrt{\pi\over\a...
...er 2\pi\alpha}\right)^{1/4} e^{ik_0x} e^{-{x^2\over 4\alpha}}\\
\end{eqnarray*}


Lets check the normalization.

\begin{displaymath}\bgroup\color{black}\int\limits_{-\infty}^\infty\; \vert f(x)...
...2\alpha}}dx
=\sqrt{1\over 2\pi\alpha}\sqrt{2\alpha\pi}=1\egroup\end{displaymath}

Given a normalized \bgroup\color{black}$A(k)$\egroup, we get a normalized \bgroup\color{black}$f(x)$\egroup.

The RMS deviation, or standard deviation of a Gaussian can be read from the distribution.

\begin{displaymath}\bgroup\color{black}P(x)={1\over\sqrt{2\pi\sigma^2}}e^{-{(x-X)^2\over 2\sigma^2}}\egroup\end{displaymath}

Squaring \bgroup\color{black}$f(x)$\egroup, we get

\begin{displaymath}\bgroup\color{black}P(x)=\sqrt{1\over 2\pi\alpha} e^{-{x^2\over 2\alpha}}. \egroup\end{displaymath}

Reading from either the coefficient or the exponential we see that

\begin{displaymath}\bgroup\color{black}\sigma_x=\sqrt{\alpha}\egroup\end{displaymath}

For the width in k-space,

\begin{displaymath}\bgroup\color{black}P(k)= \sqrt{2\alpha\over \pi}e^{-2\alpha(k-k_0)^2}. \egroup\end{displaymath}

Reading from the coefficient of the exponential, we get

\begin{displaymath}\bgroup\color{black}\sigma_k={1\over\sqrt{4\alpha}}.\egroup\end{displaymath}

We can see that as we vary the width in k-space, the width in x-space varies to keep the product constant.

\begin{displaymath}\bgroup\color{black}\sigma_x\sigma_k={1\over 2}\egroup\end{displaymath}

Translating this into momentum, we get the limit of the Heisenberg Uncertainty Principle.

\begin{displaymath}\bgroup\color{black}\sigma_x\sigma_p={\hbar\over 2}\egroup\end{displaymath}

In fact the Uncertainty Principle states that

\begin{displaymath}\bgroup\color{black}\sigma_x\sigma_p\geq{\hbar\over 2}\egroup\end{displaymath}

so the Gaussian wave packets seem to saturate the bound!

Jim Branson 2013-04-22