Compute the \bgroup\color{black}$\ell=1$\egroup Rotation Operator \bgroup\color{black}$R_y(\theta_y)$\egroup *


\begin{displaymath}\bgroup\color{black}e^{i\theta L_y/\hbar}=\sum\limits_{n=0}^\infty{\left({i\theta L_y\over\hbar}\right)^n\over n!}\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\left({L_y\over\hbar}\right)^0=\left(\matrix{1&0&0\cr 0&1&0\cr 0&0&1}\right)\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\left({L_y\over\hbar}\right)^1={1\over\sqrt{2}i}\left(\matrix{0&1&0\cr -1&0&1\cr 0&-1&0}\right)\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\left({L_y\over\hbar}\right)^2={1\over 2}\left(\matrix{1&0&-1\cr 0&2&0\cr -1&0&1}\right)\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\left({L_y\over\hbar}\right)^3={1\over\sq...
...-2&0&2\cr 0&-2&0}\right)
=\left({L_y\over\hbar}\right)\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black} ... \egroup\end{displaymath}

All the odd powers are the same. All the nonzero even powers are the same. The \bgroup\color{black}$\hbar$\egroups all cancel out. We now must look at the sums for each term in the matrix and identify the function it represents.


\begin{displaymath}\bgroup\color{black}e^{i\theta L_y/\hbar}=\left(\matrix{1&0&0...
...theta)-1)\left(\matrix{1&0&-1\cr 0&2&0\cr -1&0&1}\right)\egroup\end{displaymath}

Putting this all together, we get

\begin{displaymath}\bgroup\color{black}R_y(\theta_y)=\left(\matrix{
{1\over 2}(...
...2}}\sin(\theta_y)&{1\over 2}(1+\cos(\theta_y)) }\right).\egroup\end{displaymath}

Jim Branson 2013-04-22