1D Model of a Crystal Derivation *

We are working with the periodic potential

\begin{displaymath}\bgroup\color{black} V(x)=aV_0\sum\limits_{n=-\infty}^\infty \delta(x-na) .\egroup\end{displaymath}

Our states have positive energy. This potential has the symmetry that a translation by the lattice spacing \bgroup\color{black}$a$\egroup leaves the problem unchanged. The probability distributions must therefore have this symmetry

\begin{displaymath}\bgroup\color{black} \vert\psi(x+a)\vert^2=\vert\psi(x)\vert^2 ,\egroup\end{displaymath}

which means that the wave function differs by a phase at most.

\begin{displaymath}\bgroup\color{black} \psi(x+a)=e^{i\phi}\psi(x) \egroup\end{displaymath}

The general solution in the region \bgroup\color{black}$(n-1)a<x<na$\egroup is

\begin{displaymath}\bgroup\color{black} \psi_n(x)=A_n\sin(k[x-na])+B_n\cos(k[x-na]) \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black} k=\sqrt{2mE\over\hbar^2} \egroup\end{displaymath}

Now lets look at the boundary conditions at \bgroup\color{black}$x=na$\egroup. Continuity of the wave function gives

\begin{eqnarray*}
\psi_n(na)&=&\psi_{n+1}(na) \\
A_n\sin(0)+B_n\cos(0)&=&A_{n+1...
...1}\cos(ka) \\
B_{n+1}&=&{B_n+A_{n+1}\sin(ka)\over\cos(ka)} .\\
\end{eqnarray*}


The discontinuity in the first derivative is

\begin{eqnarray*}
\left.{d\psi_{n+1}\over dx}\right\vert _{na}
-\left.{d\psi_{n...
...A_{n+1}\cos(ka)+B_{n+1}\sin(ka)-A_n]={2maV_0\over\hbar^2}B_n \\
\end{eqnarray*}


Substituting \bgroup\color{black}$B_{n+1}$\egroup from the first equation

\begin{eqnarray*}
k[A_{n+1}\cos(ka)+[B_n+A_{n+1}\sin(ka)]\tan(ka)-A_n]={2maV_0\o...
...+1}={2maV_0\over\hbar^2k}B_n\cos(ka)-B_n\sin(ka)+A_n\cos(ka) \\
\end{eqnarray*}


Plugging this equation for \bgroup\color{black}$A_{n+1}$\egroup back into the equation above for \bgroup\color{black}$B_{n+1}$\egroup we get

\begin{eqnarray*}
B_{n+1}&=&{B_n+A_{n+1}\sin(ka)\over\cos(ka)} \\
B_{n+1}&=&{B_...
...&=&{2maV_0\over\hbar^2k}B_n\sin(ka)+B_n\cos(ka)+A_n\sin(ka) .\\
\end{eqnarray*}


We now have two pairs of equations for the \bgroup\color{black}$n+1$\egroup coefficients in terms of the \bgroup\color{black}$n$\egroup coefficients.

\begin{eqnarray*}
A_{n+1}&=&{2maV_0\over\hbar^2k}B_n\cos(ka)-B_n\sin(ka)+A_n\cos...
...in(ka) \\
A_{n+1}&=&e^{i\phi}A_n \\
B_{n+1}&=&e^{i\phi}B_n \\
\end{eqnarray*}


Using the second pair of equations to eliminate the \bgroup\color{black}$n+1$\egroup coefficients, we have

\begin{eqnarray*}
(e^{i\phi}-\cos(ka))A_n=\left({2maV_0\over\hbar^2k}\cos(ka)-\s...
...cos(ka)-{2maV_0\over\hbar^2k}\sin(ka)\right)B_n=\sin(ka)A_n .\\
\end{eqnarray*}


Now we can eliminate all the coefficients.

\begin{eqnarray*}
(e^{i\phi}-\cos(ka))(e^{i\phi}-\cos(ka)-{2maV_0\over\hbar^2k}\...
...phi}\left({2maV_0\over\hbar^2k}\sin(ka)+2\cos(ka)\right)+1=0 \\
\end{eqnarray*}


Multiply by \bgroup\color{black}$e^{-i\phi}$\egroup.

\begin{eqnarray*}
e^{i\phi}+e^{-i\phi}-\left({2maV_0\over\hbar^2k}\sin(ka)+2\cos...
...ight)=0 \\
\cos(\phi)=\cos(ka)+{maV_0\over\hbar^2k}\sin(ka) \\
\end{eqnarray*}


This relation puts constraints on \bgroup\color{black}$k$\egroup, like the constraints that give us quantized energies for bound states. Since \bgroup\color{black}$\cos(\phi)$\egroup can only take on values between -1 and 1, there are allowed bands of \bgroup\color{black}$k$\egroup and gaps between those bands.

Jim Branson 2013-04-22