Commutators of \bgroup\color{black}$A$\egroup, \bgroup\color{black}$A^\dagger$\egroup and \bgroup\color{black}$H$\egroup

We will use the commutator between \bgroup\color{black}$A$\egroup and \bgroup\color{black}$A^\dagger$\egroup to solve the HO problem. The operators are defined to be

\begin{eqnarray*}
A &=&\left(\sqrt{m\omega\over2\hbar}x+i{p\over\sqrt{2m\hbar\om...
...t{m\omega\over2\hbar}x-i{p\over\sqrt{2m\hbar\omega}}\right) .\\
\end{eqnarray*}


The commutator is

\begin{eqnarray*}[A,A^\dagger]&=&{m\omega\over2\hbar}[x,x]+{1\over 2m\hbar\omega...
...\\
&=&{i\over 2\hbar}(-[x,p]+[p,x])={i\over \hbar}[p,x]=1 .\\
\end{eqnarray*}


Lets use this simple commutator

\begin{displaymath}\bgroup\color{black} [A,A^\dagger]=1 \egroup\end{displaymath}

to compute commutators with the Hamiltonian. This is easy if \bgroup\color{black}$H$\egroup is written in terms of \bgroup\color{black}$A$\egroup and \bgroup\color{black}$A^\dagger$\egroup.

\begin{eqnarray*}[H,A]&=&\hbar\omega[A^\dagger A,A]=\hbar\omega[A^\dagger,A]A=-\...
...er]=\hbar\omega A^\dagger[A,A^\dagger]=\hbar\omega A^\dagger \\
\end{eqnarray*}




Jim Branson 2013-04-22