
L
ooking up at the sky on a
clear night, we feel we can
see forever. There seems to
be no end to the stars and
galaxies; even the darkness
in between them is filled

with light if only we stare through a sen-
sitive enough telescope. In truth, of
course, the volume of space we can ob-
serve is limited by the age of the universe
and the speed of light. But given enough
time, could we not peer ever farther, al-
ways encountering new galaxies and
phenomena?

Maybe not. Like a hall of mirrors,
the apparently endless universe might be
deluding us. The cosmos could, in fact,
be finite. The illusion of infinity would
come about as light wrapped all the
way around space, perhaps more
than once—creating multiple im-
ages of each galaxy. Our own
Milky Way galaxy would be no
exception; bizarrely, the skies
might even contain facsimiles of
the earth at some earlier era. As
time marched on, astronomers
could watch the galaxies develop
and look for new mirages. But even-
tually no new space would enter into
their view. They would have seen it all.

The question of a finite or infinite universe is one of the old-
est in philosophy. A common misconception is that it has
already been settled in favor of the latter. The reasoning, often
repeated in textbooks, draws an unwarranted conclusion from
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“INFINITY BOX” evokes a finite cosmos that
looks endless. The box contains only three

balls, yet the mirrors that line its walls produce
an infinite number of images. Of course, in the
real universe there is no boundary from which

light can reflect. Instead a multiplicity of
images could arise as light rays wrap around

the universe again and again. From the pattern
of repeated images, one could deduce the

universe’s true size and shape.

Conventional wisdom says the universe 
is infinite. But it could be finite, 

merely giving the illusion of infinity 
Is
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Einstein’s general theory of relativity. According to relativity,
space is a dynamic medium that can curve in one of three ways,
depending on the distribution of matter and energy within it.
Because we are embedded in space, we cannot see the flexure
directly but rather perceive it as gravitational attraction and
geometric distortion of images. To determine which of the three
geometries our universe has, astronomers have been measur-
ing the density of matter and energy in the cosmos. It now
appears to be too low to force space to arch back on itself—a
“spherical” geometry. Therefore, space must have either the
familiar Euclidean geometry, like that of a plane, or a “hyper-
bolic” geometry, like that of a saddle [see illustration on next
page]. At first glance, such a universe stretches on forever.

One problem with this conclusion is that the universe could
be spherical yet so large that the observable part seems Euclid-
ean, just as a small patch of the earth’s surface looks flat. A
broader issue, however, is that relativity is a purely local theo-
ry. It predicts the curvature of each small volume of space—its

w w w . s c i a m . c o m  T H E  O N C E  A N D  F U T U R E  C O S M O S 59
COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



geometry—based on the matter and energy
it contains. Neither relativity nor standard
cosmological observations say anything
about how those volumes fit together to give
the universe its overall shape—its topology.
The three plausible cosmic geometries are
consistent with many different topologies.
For example, relativity would describe both
a torus (a doughnutlike shape) and a plane
with the same equations, even though the
torus is finite and the plane is infinite.
Determining the topology requires some
physical understanding beyond relativity.

The usual assumption is that the uni-
verse is, like a plane, “simply connected,”
which means there is only one direct path
for light to travel from a source to an ob-
server. A simply connected Euclidean or
hyperbolic universe would indeed be infi-
nite. But the universe might instead be
“multiply connected,” like a torus, in
which case there would be many different
paths. An observer would see multiple im-
ages of each galaxy and could easily mis-
interpret them as distinct galaxies in an
endless space, much as a visitor to a mir-
rored room has the illusion of seeing a huge crowd.

A multiply connected space is no mere mathematical whim-
sy; it is even preferred by some schemes for unifying the funda-
mental forces of nature, and it does not contradict any available
evidence. Over the past few years, research into cosmic topolo-
gy has blossomed. New observations may soon reach a defini-
tive answer.

Comfort in the Finite
MANY COSMOLOGISTS EXPECT the universe to be finite.
Part of the reason may be simple comfort: the human mind en-
compasses the finite more readily than the infinite. But there are
also two scientific lines of argument that favor finitude. The first
involves a thought experiment devised by Isaac Newton and re-
visited by George Berkeley and Ernst Mach. Grappling with the
causes of inertia, Newton imagined two buckets partially filled
with water. The first bucket is left still, and the surface of the
water is flat. The second bucket is spun rapidly, and the surface
of the water is concave. Why?

The naive answer is centrifugal force. But how does the sec-
ond bucket know it is spinning? In particular, what defines the
inertial reference frame relative to which the second bucket
spins and the first does not? Berkeley and Mach’s answer was
that all the matter in the universe collectively provides the ref-
erence frame. The first bucket is at rest relative to distant galax-
ies, so its surface remains flat. The second bucket spins rela-
tive to those galaxies, so its surface is concave. If there were
no distant galaxies, there would be no reason to prefer one ref-
erence frame over the other. The surface in both buckets would

have to remain flat, and therefore the water would require no
centripetal force to keep it rotating. In short, it would have no
inertia. Mach inferred that the amount of inertia a body expe-
riences is proportional to the total amount of matter in the uni-
verse. An infinite universe would cause infinite inertia. Noth-
ing could ever move.

In addition to Mach’s argument, there is preliminary work
in quantum cosmology, which attempts to describe how the uni-
verse emerged spontaneously from the void. Some such theories
predict that a low-volume universe is more probable than a
high-volume one. An infinite universe would have zero proba-
bility of coming into existence [see “Quantum Cosmology and
the Creation of the Universe,” by Jonathan J. Halliwell; Scien-
tific American, December 1991]. Loosely speaking, its ener-
gy would be infinite, and no quantum fluctuation could muster
such a sum.

Historically, the idea of a finite universe ran into its own ob-
stacle: the apparent need for an edge. Aristotle argued that the
universe is finite on the grounds that a boundary was necessary
to fix an absolute reference frame, which was important to his
worldview. But his critics wondered what happened at the edge.
Every edge has another side. So why not redefine the “universe”
(which roughly means “one side”) to include that other side?
German mathematician Georg F. B. Riemann solved the riddle
in the mid-19th century. As a model for the cosmos, he pro-
posed the hypersphere—the three-dimensional surface of a four-
dimensional ball, just as an ordinary sphere is the two-dimen-
sional surface of a three-dimensional ball. It was the first ex-
ample of a space that is finite yet has no problematic boundary.
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Euclidean

Hyperbolic

Spherical

LOCAL GEOMETRY of space can be Euclidean, spherical or hyperbolic—the only possibilities
consistent with the observed symmetry of the cosmos on large scales. On the Euclidean plane, 
the angles of a triangle add to exactly 180 degrees; on the spherical surface, they add to more than 
180 degrees; and on the hyperbolic surface (or saddle), to less than 180 degrees. Local geometry
determines how objects move. But it does not describe how individual volumes connect to give 
the universe its global shape.

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.



One might still ask what is outside the universe. But this
question supposes that the ultimate physical reality must be a
Euclidean space of some dimension. That is, it presumes that if
space is a hypersphere, then that hypersphere must sit in a four-
dimensional Euclidean space, allowing us to view it from the
outside. Nature, however, need not cling to this notion. It would
be perfectly acceptable for the universe to be a hypersphere and
not be embedded in any higher-dimensional space. Such an ob-
ject may be difficult to visualize, because we are used to viewing
shapes from the outside. But there need not be an “outside.”

By the end of the 19th century, mathematicians had discov-
ered a variety of finite spaces without boundaries. German as-
tronomer Karl Schwarzschild brought this work to the atten-
tion of his colleagues in 1900. In a postscript to an article in
Vierteljahrschrift der Astronomischen Gesellschaft, he chal-
lenged his readers:

Imagine that as a result of enormously extended astronom-
ical experience, the entire universe consists of countless iden-
tical copies of our Milky Way, that the infinite space can be
partitioned into cubes each containing an exactly identical
copy of our Milky Way. Would we really cling on to the as-
sumption of infinitely many identical repetitions of the same
world?. . . We would be much happier with the view that
these repetitions are illusory, that in reality space has pecu-
liar connection properties so that if we leave any one cube
through a side, then we immediately reenter it through the
opposite side.

Schwarzschild’s example illustrates how one can mentally
construct a torus from Euclidean space. In two dimensions, be-
gin with a square and identify opposite sides as the same—as is
done in many video games, such as the venerable Asteroids, in
which a spaceship going off the right side of the screen reappears
on the left side. Apart from the interconnections between sides,
the space is as it was before. All the familiar rules of Euclidean
geometry hold. At first glance, the space looks infinite to those
who live within it, because there is no limit to how far they can
see. Without traveling around the universe and reencountering
the same objects, the ship could not tell that it is in a torus [see
illustration below]. In three dimensions, one begins with a cu-
bical block of space and glues together opposite faces to pro-
duce a 3-torus.

The Euclidean 2-torus, apart from some sugar glazing, is
topologically equivalent to the surface of a doughnut. Unfor-
tunately, the Euclidean torus cannot sit in our three-dimensional
Euclidean space. Doughnuts may do so because they have been
bent into a spherical geometry around the outside and a hyper-
bolic geometry around the hole. Without this curvature, dough-
nuts could not be viewed from the outside.

When Albert Einstein published the first relativistic model
of the universe in 1917, he chose Riemann’s hypersphere as the
overall shape. At that time, the topology of space was an active
topic of discussion. Russian mathematician Aleksander Fried-
mann soon generalized Einstein’s model to permit an expand-
ing universe and a hyperbolic space. His equations are still rou-
tinely used by cosmologists. He emphasized that the equations
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DOUGHNUT SPACE, more properly known as the Euclidean 2-torus, is a flat square whose opposite
sides are connected (1). Anything crossing one edge reenters from the opposite edge. Although
this surface cannot exist within our three-dimensional space, a distorted version can be built by
taping together top and bottom (2) and scrunching the resulting cylinder into a ring (3). For
observers in the pictured red galaxy, space seems infinite because their line of sight never ends
(below). Light from the yellow galaxy can reach them along several different paths, so they see
more than one image of it. A Euclidean 3-torus is built from a cube rather than a square.
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of his hyperbolic model applied to finite universes as well as to
the standard infinite one—an observation all the more remark-
able because, at the time, no examples of finite hyperbolic spaces
were known. In fact, almost all topologies require hyperbolic
geometries. In two dimensions, a finite Euclidean space must
have the topology of either a 2-torus or a Klein bottle; in three
dimensions, there are only 10 Euclidean possibilities—namely,
the 3-torus and nine simple variations on it, such as gluing to-
gether opposite faces with a quarter turn or with a reflection,
instead of straight across. By comparison, there are infinitely
many possible topologies for a finite hyperbolic three-dimen-
sional universe. Their rich structure is still the subject of intense
research. Similarly, there are infinitely many possible topologies
for a finite spherical three-dimensional universe.

Eightfold
OF ALL THE ISSUES in cosmic topology, perhaps the most dif-
ficult to grasp is how a hyperbolic space can be finite. For sim-
plicity, first consider a two-dimensional universe. Mimic the con-
struction of a 2-torus but begin with a hyper-
bolic surface instead. Cut out a regular octagon
and identify opposite pairs of edges, so that
anything leaving the octagon across one edge
returns at the opposite edge. Alternatively, one
could devise an octagonal Asteroids screen [see
illustration at right]. This is a multiply con-
nected universe, topologically equivalent to a
two-holed pretzel. An observer at the center of
the octagon sees the nearest images of himself
or herself in eight different directions. The illu-
sion is that of an infinite hyperbolic space, even
though this universe is really finite. Similar con-
structions are possible in three dimensions, al-
though they are harder to visualize. 

The angles of the octagon merit careful
consideration. On a flat surface, a polygon’s
angles do not depend on its size. A large regu-
lar octagon and a small regular octagon both
have inside angles of 135 degrees. On a curved
surface, however, the angles do vary with size.
On a sphere the angles increase as the polygon
grows, whereas on a hyperbolic surface the an-
gles decrease. The above construction requires
an octagon that is just the right size to have 45-
degree angles, so that when the opposite sides
are identified, the eight corners will meet at a
single point and the total angle will be 360 de-
grees. This subtlety explains why the con-
struction would not work with a flat octagon;
in Euclidean geometry, eight 135-degree cor-
ners cannot meet at a single point. The two-di-
mensional universe obtained by identifying op-
posite sides of an octagon must be hyperbolic.
The topology dictates the geometry.

The size of the polygon or polyhedron is

measured relative to the only geometrically meaningful length
scale for a space: the radius of curvature. A sphere, for example,
can have any physical size (in meters, say), but its surface area
will always be exactly 4π times the square of its radius—that
is, 4π square radians. The same principle applies to the size of
a hyperbolic topology, for which a radius of curvature can also
be defined. The smallest known hyperbolic space, discovered by
one of us (Weeks) in 1985, may be constructed by identifying
pairs of faces of an 18-sided polyhedron. It has a volume of ap-
proximately 0.94 cubic radian. Other hyperbolic topologies are
built from larger polyhedra.

Just as hyperbolic geometry allows for many topologies, so
does spherical geometry. In three dimensions, the sphere is gen-
eralized into the hypersphere. (To visualize the hypersphere,
think of it as being composed of two solid balls in Euclidean
space, glued together along their surface: each point of the sur-
face of one ball is the same as the corresponding point on the
other ball.) The hypersphere’s volume is exactly 2π2 times the
cube of its curvature radius. As early as 1917, Dutch astronomer
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Tile 1

Tile 2

FINITE HYPERBOLIC SPACE is formed by an octagon whose opposite sides are connected, so that
anything crossing one edge reenters from the opposite edge (top left). Topologically, the
octagonal space is equivalent to a two-holed pretzel (top right). Observers on the surface would
see an infinite octagonal grid of galaxies. Such a grid can be drawn only on a hyperbolic
manifold, a strange floppy surface where every point has the geometry of a saddle (bottom). SO
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Willem de Sitter distinguished the projective three-sphere (P3)
from the ordinary three-sphere, S3. The projective sphere is
formed from the sphere by identifying all pairs of antipodal
points (those directly opposite each other on the sphere). P3

therefore has half the volume of S3. Aside from P3, there are in-
finitely many topologies with spherical geometries. Unlike in hy-
perbolic geometry—in which the more “complicated” the topol-
ogy, the larger the volume of the fundamental polyhedron—in
spherical geometry topological complexity leads to ever smaller
fundamental polyhedra. For example, the Poincaré space is rep-
resented by a dodecahedron whose opposite faces are pairwise
identified; it has a volume 1⁄120 that of the hypersphere.

Cosmic space may well have such a shape, in which case an
extraordinary “spherical lens” would be generated, with images
of cosmic sources repeating according to the Poincaré space’s
120-fold “crystal structure.” From a mathematical point of
view, the volume of the universe, in cubic radians, can be arbi-
trarily small even if the curvature of the universe is very large.
This means that no matter how close to Euclidean space is ob-
served to be, it will always be worth looking for spherical cos-
mic topology.

Diverse astronomical observations imply that the density of
matter in the cosmos is only a third of that needed for space to
be Euclidean. Until recently, it was not known whether a cos-
mological constant made up the difference [see “Cosmological
Antigravity,” on page 30] or the universe had a hyperbolic
geometry with a radius of curvature of 18 billion light-years. Yet
recent measurements of the cosmic microwave background
strongly suggest that the geometry is at least quite close to Eu-
clidean. Those results, as well as careful measurements of dis-
tant supernovae, confirm that something very much like a cos-
mological constant is prevalent. Nevertheless, many compact
topologies—Euclidean, hyperbolic and especially spherical—re-
main ripe for detection.

The decades from 1930 to 1990 were the dark ages of think-
ing on cosmic topology. But the 1990s saw the rebirth of the
subject. Roughly as many papers have been published on cos-

mic topology in the past several years as in the preceding
80. Most exciting of all, cosmologists are finally poised to
determine the topology observationally.

The simplest test of topology is to look at the arrange-
ment of galaxies. If they lie in a rectangular lattice, with im-
ages of the same galaxy repeating at equivalent lattice
points, the universe is a 3-torus. Other patterns reveal more
complicated topologies. Unfortunately, looking for such
patterns can be difficult, because the images of a galaxy
would depict different points in its history. Astronomers
would need to recognize the same galaxy despite changes
in appearance or shifts in position relative to neighboring
galaxies. Over the past quarter of a century researchers
such as Dmitri Sokoloff of Moscow State University, Vik-
tor Shvartsman of the Soviet Academy of Sciences in
Moscow, J. Richard Gott III of Princeton University and
Helio V. Fagundes of the Institute for Theoretical Physics
in São Paulo have looked for and found no repeating im-

ages within one billion light-years of the earth.
Others—such as Boudewijn F. Roukema, now at the Center

of Astronomy of the Nicolaus Copernicus University in Torun,
Poland—have sought patterns among quasars. Because these
objects, thought to be powered by black holes, are bright, any
patterns among them can be seen from large distances. The ob-
servers identified all groupings of four or more quasars. By ex-
amining the spatial relations within each group, they checked
whether any pair of groups could in fact be the same group seen
from two different directions. Roukema identified two possi-
bilities, but they may not be statistically significant.

Roland Lehoucq and Marc Lachièze-Rey of the department
of astrophysics at CEA Saclay in France, together with Jean-
Philippe Uzan of the Theoretical Physics Laboratory in Orsay
and one of us (Luminet), have circumvented the problems of
galaxy recognition in the following way. We have developed
various methods of cosmic crystallography that can make out a
pattern statistically without needing to recognize specific galax-
ies as images of one another. If galaxy images repeat periodi-
cally, a histogram of all galaxy-to-galaxy distances should show
peaks at certain distances, which reflect the true size of the uni-
verse. The method has been shown to work well theoretically in
a Euclidean or spherical universe. So far we have seen no pat-
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DISTANCES BETWEEN GALAXY CLUSTERS do not show the pattern expected for 
a finite, interconnected universe—namely, sharp peaks at distances related to
the true size of the cosmos (inset). But we (the authors) only studied clusters
within roughly two billion light-years of the earth. The universe could still be
interconnected on larger scales.

JEAN-PIERRE LUMINET, GLENN D. STARKMAN and JEFFREY R.
WEEKS say they relish participating in the boom years of cosmic
topology, as researchers come together across disciplinary
boundaries. Luminet, who studies black holes and cosmology at
Paris Observatory, has written several books of science as well as
poetry and has collaborated with composer Gérard Grisey on the
musical performance Le Noir de l’étoile. Starkman was institu-
tionalized for six years—at the Institute for Advanced Study in
Princeton, N.J., and then at the Canadian Institute for Theoretical
Astrophysics in Toronto. He has been released into the custody of
Case Western Reserve University. Weeks, the mathematician of
the trio, was named a MacArthur Fellow in 1999 and is currently
an independent scholar.
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tern [see illustration on preceding page], but this may be because
of the paucity of real data on galaxies farther away than two bil-
lion light-years. The Sloan Digital Sky Survey—an ongoing
American-Japanese collaboration to prepare a three-dimen-
sional map of much of the universe—and other high-redshift
galaxy surveys in progress will produce a larger data set for these
studies.

Finally, several other research groups plan to ascertain the
topology of the universe using the cosmic microwave back-
ground, the faint glow remaining from the big bang. The radi-
ation is remarkably homogeneous: its temperature and intensi-
ty are the same in all parts of the sky to nearly one part in
100,000. But there are slight undulations discovered in 1991 by
the Cosmic Background Explorer (COBE) satellite. Roughly
speaking, the microwave background depicts density variations
in the early universe, which ultimately seeded the growth of stars
and galaxies.

Circular Reasoning
THESE FLUCTUATIONS are the key to resolving a variety of
cosmological issues, and topology is one of them. Microwave
photons arriving at any given moment began their journeys at
approximately the same time and distance from the earth. So
their starting points form a sphere,
called the last scattering surface, with
the earth at the center. Just as a suffi-
ciently large paper disk overlaps itself
when wrapped around a broom han-
dle, the last scattering surface will in-
tersect itself if it is big enough to wrap
all the way around the universe. The
intersection of a sphere with itself is
simply a circle of points in space.

Looking at that circle from the
earth, astronomers would see two cir-
cles in the sky that share the same pat-
tern of temperature variations. Those
two circles are really the same circle in
space seen from two perspectives [see
illustration at right]. They are analogous
to the multiple images of a candle in a
mirrored room, each of which shows
the candle from a different angle.

Two of us (Starkman and Weeks),
working with David N. Spergel of
Princeton and Neil J. Cornish of Mon-
tana State University, hope to detect

such circle pairs. The beauty of this method is that it is unaf-
fected by the uncertainties of contemporary cosmology—it re-
lies on the observation that space has constant curvature, but it
makes no assumptions about the density of matter, the geome-
try of space or the presence of a cosmological constant. The
main problem is to identify the circles despite the forces that tend
to distort their images. For example, as galaxies coalesce, they
exert a varying gravitational pull on the radiation as it travels
toward the earth, shifting its energy.

Unfortunately, COBE was incapable of resolving structures
on an angular scale of less than 10 degrees. Moreover, it did not
identify individual hot or cold spots; all one could say for sure
is that statistically some of the fluctuations were real features
rather than instrumental artifacts. Higher-resolution and low-
er-noise instruments have since been developed. Some are al-
ready making observations from ground-based or balloon-
borne observatories, but they do not cover the whole sky. The
crucial observations will be made by NASA’s Microwave An-
isotropy Probe (MAP), now gathering data, and the European
Space Agency’s Planck satellite, scheduled for launch in 2007.

The relative positions of the matching circles, if any, will re-
veal the specific topology of the universe. If the last scattering
surface is barely big enough to wrap around the universe, it will

EarthEarth

WRAPPED AROUND THE COSMOS, light creates patterns in the sky.
All the light received from a specific time or from a specific
distance from the earth—such as the cosmic microwave
background radiation left over from the big bang—represents a
sphere. If this sphere is larger than the universe, it will intersect
itself, defining a circle. This circle consists of those points we see
twice: from the left and from the right (right). A two-dimensional
analogy is a circular bandage wrapped around a finger (above). 
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intersect only its nearest ghost images. If it is larger, it will reach
farther and intersect the next nearest images. If the last scatter-
ing surface is large enough, we expect hundreds or even thou-
sands of circle pairs [see illustration above]. The data will be
highly redundant. The largest circles will completely determine
the topology of space as well as the position and orientation of
all smaller circle pairs. Thus, the internal consistency of the pat-
terns will verify not just the correctness of the topological find-
ings but also the correctness of the microwave background data.

Other teams have different plans for the data. John D. Bar-
row and Janna J. Levin of the University of Cambridge, Emory
F. Bunn of St. Cloud State University, Evan Scannapieco of the
Astrophysical Observatory of Arcetri, Italy, and Joseph I. Silk
of the University of Oxford intend to examine the pattern of hot
and cold spots directly. The group has already constructed sam-
ple maps simulating the microwave background for particular
topologies. They have multiplied the temperature in each di-
rection by the temperature in every other direction, generating
a huge four-dimensional map of what is usually called the two-
point correlation function. The maps provide a quantitative way
of comparing topologies. J. Richard Bond of the Canadian In-
stitute for Theoretical Astrophysics in Toronto, Dmitry Pogo-
syan of the University of Alberta and Tarun Souradeep of the
Inter-University Center for Astronomy and Astrophysics in
Pune, India, were among the first to apply related new tech-
niques to the existing COBE data, which could accurately iden-
tify the smallest hyperbolic spaces.

Beyond the immediate intellectual satisfaction, discovering
the topology of space would have profound implications for
physics. Although relativity says nothing about the universe’s
topology, newer and more comprehensive theories that are un-
der development should predict the topology or at least assign
probabilities to the various possibilities. These theories are need-
ed to explain gravity in the earliest moments of the big bang,
when quantum-mechanical effects were important [see “Quan-
tum Gravity,” by Bryce S. DeWitt; Scientific American, De-
cember 1983]. The theories of everything, such as M-theory, are

in their infancy and do not yet have testable consequences. But
eventually the candidate theories will make predictions about
the topology of the universe on large scales.

The tentative steps toward the unification of physics have al-
ready spawned the subfield of quantum cosmology. There are
three basic hypotheses for the birth of the universe, which are
advocated, respectively, by Andrei Linde of Stanford Universi-
ty, Alexander Vilenkin of Tufts University and Stephen W.
Hawking of the University of Cambridge. One salient point of
difference is whether the expected volume of a newborn uni-
verse is very small (Linde’s and Vilenkin’s proposals) or very
large (Hawking’s). Topological data may be able to distinguish
among these models.

Since ancient times, cultures around the world have asked
how the universe began and whether it is finite or infinite.
Through a combination of mathematical insight and careful ob-
servation, science in the 20th century partially answered the first
question. It might begin the 21st century with an answer to the
second as well.
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M O R E  T O  E X P L O R E

THREE POSSIBLE UNIVERSES, large, medium and small (top row), would produce distinctive patterns in the cosmic microwave
background radiation, as simulated here (bottom row). Each of these universes has the topology of a 3-torus and is shown repeated
six times to evoke the regular grid that an observer would see. In the large universe, the sphere of background radiation does not
overlap itself, so no patterns emerge. In the medium universe, the sphere intersects itself once in each direction. One may verify
that tracing clockwise around the central circle in the left hemisphere reveals the same sequence of colors as tracing counter-
clockwise in the right. Finally, in the small universe, the sphere intersects itself many times, resulting in a more complex pattern.
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