1. Calculate the DeBroglie wavelength for
 (a) a proton with 10 MeV kinetic energy,
 (b) An electron with 10 MeV kinetic energy, and
 (c) a 1 gram lead ball moving with a velocity of 10 cm/sec (one erg is one gram cm²/sec²).
 Be sure to take account of relativity where needed.

 a) \(T << mc^2; \lambda = \frac{2\pi\hbar}{p}; \frac{p^2}{2m} = T; p = \sqrt{2mT}; \lambda = \frac{2\pi\hbar}{\sqrt{2mc^2T}} = 9.05F; \)

 b) \(pc = T; \lambda = \frac{2\pi\hbar}{p} = 124F \)

 c) \(\lambda = \frac{2\pi\hbar}{mv} = \frac{2\pi(1.05\times10^{-25}g\times cm^2/s)}{10g\times cm/s} = 6.6\times10^{-26} \text{ cm} \)

2. For a free particle, the Hamiltonian operator \(H \) is given by \(H = p^2/2m \). Find the functions, \(\psi(x) \), which are eigenfunctions of both the Hamiltonian and of Parity. Write the eigenfunction that has energy eigenvalue \(E_0 \). Now write the corresponding eigenfunctions in momentum space.

 \[\cos(p_0x/\hbar) \] has positive parity and \(\sin(p_0x/\hbar) \) has negative parity with \(p_0 = \sqrt{2mE_0} \).

 \[\frac{1}{\sqrt{2\pi\hbar}} \cos(px/\hbar) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} + e^{-ipx/\hbar} \]

 The Fourier Transform of \(\frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar} \) is \(\phi(p) = \delta(p - p_0) \). So the F.T. of the above is \(\phi(p) = \delta(p-p_0)+\delta(p+p_0)/2 \)

3. For a free particle, the total energy operator \(H \) is given by \(H = p^2/2m \).

 a) Compute the commutators \([H,x]\) and \([H,p]\).

 b) If a particle is in a state of definite energy, what do these commutators tell you about how well we know the particle’s position and momentum?

 a) \([H, x] = \frac{\hbar p}{im} \) and \([H, p] = 0 \)

 b) Since \(p \) commutes with the Hamiltonian, we can know \(p \) exactly. Since \(x \) does not commute and we are in a definite energy state so that \(\Delta E = 0 \), we cannot know \(x \) at all.

4. Calculate the commutators \([p_y, L_x]\) and \([L_y^2, L_z]\).

 \[[p_y, L_x] = [p_y, yp_z - zp_y] = \frac{\hbar}{i} p_z \]

 \[[L_y^2, L_z] = L_y[L_y, L_z] + [L_y, L_z]L_y = i\hbar(L_yL_z + L_zL_y) \]

5. A beam of particles of wave-number \(k \) (this means \(e^{ikx} \)) is incident upon a one dimensional potential \(V(x) = \lambda\delta(x) \). Calculate the probability to be transmitted. Graph it as a function of \(k \).

 For \(x < 0 \) \(e^{ikx} + Re^{-ikx} \); for \(x > 0 \), \(Te^{ikx} \); Wavefunction is continuous \(1 + R = T \). Discontinuity in first derivative \(ikT - (ik - ikR) = \frac{2m\lambda T}{\hbar}; T = \frac{ik}{ik - m\lambda/\hbar}; P_T = |T|^2 = \frac{k^2}{k^2 + m^2\lambda^2/\hbar^2} \). Show a graph.

6. A 1D harmonic oscillator is in a linear combination of the energy eigenstates \(\psi(t = 0) = \sqrt{\frac{1}{2}} u_0 - i\sqrt{\frac{1}{4}} u_1 \). Find the expected value of \(p \) at a later time \(t \).

 \(\psi(t) = \sqrt{T} u_0 e^{-i\omega t / 2} - i\sqrt{\frac{1}{4}} u_1 e^{-3i\omega t / 2} \); \(p = i\sqrt{\frac{m\hbar}{2}} (A^\dagger - A) \); \(\langle p \rangle = i\sqrt{\frac{m\hbar}{2}} \sqrt{T} u_0 e^{-i\sqrt{\frac{1}{4}} u_1 e^{-i\omega t}} \langle A^\dagger - A \rangle \sqrt{T} u_0 e^{-i\sqrt{\frac{1}{4}} u_1 e^{-i\omega t}} \) \(\langle p \rangle = \sqrt{\frac{m\hbar}{2}} \sqrt{T} u_0 e^{-i\omega t} + i e^{i\omega t} \) \(\langle p \rangle = -\sqrt{\frac{3m\hbar}{32}} 2 \cos(\omega t) = -\sqrt{\frac{3m\hbar}{8}} \cos(\omega t) \)