Expectation Values

We can use operators to help us compute the expectation value of a physical variable. If a particle is in the state \bgroup\color{black}$\psi(x)$\egroup, the normal way to compute the expectation value of \bgroup\color{black}$f(x)$\egroup is

\begin{displaymath}\bgroup\color{black}\langle f(x)\rangle = \int\limits_{-\inft...
...= \int\limits_{-\infty}^\infty \psi^*(x)\psi(x) f(x) dx.\egroup\end{displaymath}

If the variable we wish to compute the expectation value of (like \bgroup\color{black}$p$\egroup) is not a simple function of \bgroup\color{black}$x$\egroup, let its operator act on \bgroup\color{black}$\psi(x)$\egroup

\begin{displaymath}\bgroup\color{black}\langle p\rangle = \int\limits_{-\infty}^\infty\psi^*(x)p^{(op)}\psi(x) dx.\egroup\end{displaymath}

We have a shorthand notation for the expectation value of a variable \bgroup\color{black}$v$\egroup in the state \bgroup\color{black}$\psi$\egroup which is quite useful.

\begin{displaymath}\bgroup\color{black}\langle\psi\vert v\vert\psi\rangle \equiv \int\limits_{-\infty}^\infty\psi^*(x)v^{(op)}\psi(x) dx.\egroup\end{displaymath}

We extend the notation from just expectation values to

\begin{displaymath}\bgroup\color{black}\langle\psi\vert v\vert\phi\rangle \equiv \int\limits_{-\infty}^\infty\psi^*(x)v^{(op)}\phi(x) dx\egroup\end{displaymath}

and

\begin{displaymath}\bgroup\color{black}\langle\psi\vert\phi\rangle \equiv \int\limits_{-\infty}^\infty\psi^*(x)\phi(x) dx\egroup\end{displaymath}

We use this shorthand Dirac Bra-Ket notation a great deal.



Jim Branson 2013-04-22