The Delta Function of Energy Conservation

For harmonic perturbations, we have derived a probability to be in the final state \bgroup\color{black}$\phi_n$\egroup proportional to the following.

\begin{displaymath}\bgroup\color{black} P_n\propto \left[{4\sin^2\left((\omega_{ni}+\omega) t/2\right)\over (\omega_{ni}+\omega)^2}\right] \egroup\end{displaymath}

For simplicity of analysis lets consider the characteristics of the function

\begin{displaymath}\bgroup\color{black} g(\Delta\equiv\omega_{ni}+\omega)=\left[...
...equiv {4\sin^2\left(\Delta t/2\right)\over \Delta^2t^2} \egroup\end{displaymath}

for values of \bgroup\color{black}$t»{1\over\Delta}$\egroup. (Note that we have divided our function to be investigated by \bgroup\color{black}$t^2$\egroup. For \bgroup\color{black}$\Delta=0$\egroup, \bgroup\color{black}$g(\Delta)=1$\egroup while for all other values for \bgroup\color{black}$\Delta$\egroup, \bgroup\color{black}$g(\Delta)$\egroup approaches zero for large \bgroup\color{black}$t$\egroup. This is clearly some form of a delta function.

To find out exactly what delta function it is, we need to integrate over \bgroup\color{black}$\Delta$\egroup.

\begin{eqnarray*}
\int\limits_{-\infty}^\infty d\Delta\; f(\Delta) g(\Delta) &=&...
...over t}\int\limits_{-\infty}^\infty dy\;{\sin^2(y)\over y^2} \\
\end{eqnarray*}


We have made the substitution that \bgroup\color{black}$y={\Delta t\over 2}$\egroup. The definite integral over \bgroup\color{black}$y$\egroup just gives \bgroup\color{black}$\pi$\egroup (consult your table of integrals), so the result is simple.

\begin{eqnarray*}
\int\limits_{-\infty}^\infty d\Delta\; f(\Delta) g(\Delta) &=&...
...mega_{ni}+\omega)^2}\right]&=&2\pi t\:\delta(\omega_{ni}+\omega)
\end{eqnarray*}


Q.E.D.

Jim Branson 2013-04-22