Eigenvectors of \bgroup\color{black}$L_x$\egroup

We will do it as if we don't already know that the eigenvalues are \bgroup\color{black}$m\hbar$\egroup.

\begin{eqnarray*}
&L_x\psi=a\psi \\
& \left(\matrix{0&1&0\cr 1&0&1\cr 0&1&0}\...
...
& \left\vert\matrix{-b&1&0\cr 1&-b&1\cr 0&1&-b}\right\vert=0
\end{eqnarray*}


where \bgroup\color{black}$a={\hbar\over\sqrt{2}}b$\egroup.

\begin{eqnarray*}
& -b(b^2-1)-1(-b-0)=0 \\
& b(b^2-2)=0
\end{eqnarray*}


There are three solutions to this equation: \bgroup\color{black}$b=0$\egroup, \bgroup\color{black}$b=+\sqrt{2}$\egroup, and \bgroup\color{black}$b=-\sqrt{2}$\egroup or \bgroup\color{black}$a=0$\egroup, \bgroup\color{black}$a=+\hbar$\egroup, and \bgroup\color{black}$a=-\hbar$\egroup. These are the eigenvalues we expected for \bgroup\color{black}$\ell=1$\egroup. For each of these three eigenvalues, we should go back and find the corresponding eigenvector by using the matrix equation.

\begin{displaymath}\bgroup\color{black}\left(\matrix{0&1&0\cr 1&0&1\cr
0&1&0}\...
...right)=b\left(\matrix{\psi_1\cr \psi_2\cr \psi_3}\right)\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\left(\matrix{\psi_2\cr \psi_1+\psi_3\cr ...
...right)=b\left(\matrix{\psi_1\cr \psi_2\cr \psi_3}\right)\egroup\end{displaymath}

Up to a normalization constant, the solutions are:

\begin{eqnarray*}
\psi_{+\hbar}=c\left(\matrix{{1\over\sqrt{2}}\cr 1\cr {1\over\...
...ft(\matrix{{-1\over\sqrt{2}}\cr 1\cr {-1\over\sqrt{2}}}\right).
\end{eqnarray*}


We should normalize these eigenvectors to represent one particle. For example:

\begin{eqnarray*}
\langle\psi_{+\hbar}\vert\psi_{+\hbar}\rangle&=&1 \\
\vert c\...
...r\sqrt{2}}}\right)&=&2\vert c\vert^2=1 \\
c&=&{1\over\sqrt{2}}.
\end{eqnarray*}


Try calculating the eigenvectors of $L_y$.
You already know what the eigenvalues are.

Jim Branson 2013-04-22