Solution of Hydrogen Radial Equation *

The differential equation we wish to solve is.

\begin{displaymath}\bgroup\color{black}\left({d^2\over dr^2}+{2\over r}{d\over d...
...\ell(\ell+1)\hbar^2\over 2\mu r^2}\right)R_{E\ell}(r)=0 \egroup\end{displaymath}

First we change to a dimensionless variable \bgroup\color{black}$\rho$\egroup,

\begin{displaymath}\bgroup\color{black}\rho=\sqrt{-8\mu E\over\hbar^2}r ,\egroup\end{displaymath}

giving the differential equation

\begin{displaymath}\bgroup\color{black}{d^2R\over d\rho^2}+{2\over\rho}{dR\over ...
...rho^2}R
+\left({\lambda\over\rho}-{1\over 4}\right)R=0 ,\egroup\end{displaymath}

where the constant

\begin{displaymath}\bgroup\color{black}\lambda={Ze^2\over\hbar}\sqrt{-\mu\over 2E}=Z\alpha\sqrt{-\mu c^2\over 2E} .\egroup\end{displaymath}

Next we look at the equation for large \bgroup\color{black}$r$\egroup.

\begin{displaymath}\bgroup\color{black}{d^2R\over d\rho^2}-{1\over 4}R=0 \egroup\end{displaymath}

This can be solved by \bgroup\color{black}$R=e^{-\rho\over 2}$\egroup, so we explicitly include this.

\begin{displaymath}\bgroup\color{black}R(\rho)=G(\rho)e^{-\rho\over 2} \egroup\end{displaymath}

We should also pick of the small \bgroup\color{black}$r$\egroup behavior.

\begin{displaymath}\bgroup\color{black}{d^2R\over d\rho^2}+{2\over\rho}{dR\over d\rho}-{\ell(\ell+1)\over\rho^2}R=0 \egroup\end{displaymath}

Assuming \bgroup\color{black}$R=\rho^s$\egroup, we get

\begin{eqnarray*}
s(s-1){R\over\rho^2}+2s{R\over\rho^2}-\ell(\ell+1){R\over\rho^2}=0 .\\
s^2-s+2s=\ell(\ell+1) \\
s(s+1)=\ell(\ell+1) \\
\end{eqnarray*}


So either \bgroup\color{black}$s=\ell$\egroup or \bgroup\color{black}$s=-\ell-1$\egroup. The second is not well normalizable. We write $G$ as a sum.

\begin{displaymath}\bgroup\color{black}G(\rho)=\rho^\ell\sum\limits_{k=0}^\infty a_k\rho^k=\sum\limits_{k=0}^\infty a_k\rho^{k+\ell} \egroup\end{displaymath}

The differential equation for \bgroup\color{black}$G(\rho)$\egroup is

\begin{displaymath}\bgroup\color{black}{d^2G\over d\rho^2}-\left(1-{2\over\rho}\...
...1\over\rho}
-{\ell(\ell+1)\over\rho^2}\right)G(\rho)=0 .\egroup\end{displaymath}

We plug the sum into the differential equation.

\begin{eqnarray*}
\sum\limits_{k=0}^\infty a_k\left((k+\ell)(k+\ell-1)\rho^{k+\e...
...}^\infty a_k\left((k+\ell)-(\lambda-1)\right)\rho^{k+\ell-1} \\
\end{eqnarray*}


Now we shift the sum so that each term contains \bgroup\color{black}$\rho^{k+\ell-1}$\egroup.

\begin{displaymath}\bgroup\color{black}\sum\limits_{k=-1}^\infty a_{k+1}\left((k...
...fty a_k\left((k+\ell)-(\lambda-1)\right)\rho^{k+\ell-1} \egroup\end{displaymath}

The coefficient of each power of $\rho$ must be zero, so we can derive the recursion relation for the constants \bgroup\color{black}$a_k$\egroup.

\begin{eqnarray*}
{a_{k+1}\over a_k}&=&{k+\ell+1-\lambda\over (k+\ell+1)(k+\ell)...
...+\ell+1-\lambda\over (k+1)(k+2\ell+2)}\rightarrow {1\over k} \\
\end{eqnarray*}


This is then the power series for

\begin{displaymath}\bgroup\color{black}G(\rho)\rightarrow \rho^\ell e^\rho \egroup\end{displaymath}

unless it somehow terminates. We can terminate the series if for some value of \bgroup\color{black}$k=n_r$\egroup,

\begin{displaymath}\bgroup\color{black}\lambda=n_r+\ell+1\equiv n .\egroup\end{displaymath}

The number of nodes in \bgroup\color{black}$G$\egroup will be \bgroup\color{black}$n_r$\egroup. We will call \bgroup\color{black}$n$\egroup the principal quantum number, since the energy will depend only on \bgroup\color{black}$n$\egroup.

Plugging in for \bgroup\color{black}$\lambda$\egroup we get the energy eigenvalues.

\begin{eqnarray*}
Z\alpha\sqrt{-\mu c^2\over 2E}=n .\\
E=-{1\over 2n^2}Z^2\alpha^2\mu c^2 \\
\end{eqnarray*}


The solutions are

\begin{displaymath}\bgroup\color{black}R_{n\ell}(\rho)=\rho^\ell\sum\limits_{k=0}^\infty a_k\rho^k e^{-\rho/2} .\egroup\end{displaymath}

The recursion relation is

\begin{displaymath}\bgroup\color{black}a_{k+1}={k+\ell+1-n\over (k+1)(k+2\ell+2)}a_k .\egroup\end{displaymath}

We can rewrite \bgroup\color{black}$\rho$\egroup, substituting the energy eigenvalue.

\begin{displaymath}\bgroup\color{black}\rho=\sqrt{-8\mu E\over\hbar^2}r=\sqrt{4\...
...ar^2n^2}r
={2\mu cZ\alpha\over\hbar n}r={2Z\over na_0}r \egroup\end{displaymath}

Jim Branson 2013-04-22