Probability Conservation Equation *

Start from the probability and differentiate with respect to time.

\begin{displaymath}\bgroup\color{black} {\partial P(x,t)\over\partial t}={\parti...
...rtial t}\psi-\psi^*{\partial\psi\over\partial t}\right] \egroup\end{displaymath}

Use the Schrödinger Equation

\begin{displaymath}\bgroup\color{black} {-\hbar^2 \over 2m}{\partial^2\psi\over\partial x^2}+V(x)\psi=i\hbar{\partial\psi\over\partial t} \egroup\end{displaymath}

and its complex conjugate

\begin{displaymath}\bgroup\color{black} {-\hbar^2 \over 2m}{\partial^2\psi^*\ove...
...x^2}+V(x)\psi^*=-i\hbar{\partial\psi^*\over\partial t} .\egroup\end{displaymath}

(We assume \bgroup\color{black}$V(x)$\egroup is real. Imaginary potentials do cause probability not to be conserved.)

Now we need to plug those equations in.

\begin{displaymath}\bgroup\color{black} {\partial P(x,t)\over\partial t}={1\over...
...{\partial^2\psi\over\partial x^2}+V(x)\psi^*\psi\right] \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black} ={1\over i\hbar}{\hbar^2 \over 2m}\left[...
...tial x}\psi-\psi^*{\partial\psi\over\partial x} \right] \egroup\end{displaymath}

This is the usual conservation equation if \bgroup\color{black}$j(x,t)$\egroup is identified as the probability current.

\begin{displaymath}\bgroup\color{black} {\partial P(x,t)\over\partial t}+{\partial j(x,t)\over\partial x}=0 \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black} j(x,t)={\hbar\over 2mi}
\left[\psi^*{\pa...
...r\partial x}-{\partial\psi^*\over\partial x}\psi\right] \egroup\end{displaymath}



Jim Branson 2013-04-22