Midterm

Nov. 8, 2006

Physics 130B

1. At $t=0$, an electron is the spin state

$$
\psi(t=0)=\binom{i \sqrt{\frac{2}{3}}}{\sqrt{\frac{1}{3}}}
$$

A magnetic field B is applied in the z direction. a) Find the spin state of the particle as a function of time. b) Find the expectation value of S_{y} as a function of time. c) What is the probability to measure that the electron's spin along the x direction is $\frac{\hbar}{2}$ as a function of time? (10 points)

$$
H=-\vec{\mu} \cdot \vec{B}=\mu_{B} B \sigma_{z}
$$

a) The eigenstates are then spin up and spin down along the z direction since these are the eigenstates of σ_{z}. The energies for spin up and down along the z direction are $\pm \mu_{B} B$. So it is easy to write $\psi(t)$ since the two components of the spinor represent the energy eigenstates. Let $\omega=\frac{\mu_{B} B}{\hbar}$.

$$
\psi(t)=\binom{i \sqrt{\frac{2}{3}} e^{-i \omega t}}{\sqrt{\frac{1}{3}} e^{i \omega t}}
$$

b) Simply compute the expectation value in this state.

$$
\begin{gathered}
\left\langle S_{y}\right\rangle=\frac{\hbar}{2}\left(\begin{array}{ll}
-i \sqrt{\frac{2}{3}} e^{i \omega t} & \sqrt{\frac{1}{3}} e^{-i \omega t}
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{i \sqrt{\frac{2}{3}} e^{-i \omega t}}{\sqrt{\frac{1}{3}} e^{i \omega t}}=\frac{\hbar}{2}\left(\begin{array}{ll}
-i \sqrt{\frac{2}{3}} e^{i \omega t} & \sqrt{\frac{1}{3}} e^{-i \omega t}
\end{array}\right)\binom{-i \sqrt{\frac{1}{3}} e^{i \omega t}}{-\sqrt{\frac{2}{3}} e^{-i \omega t}} \\
\left\langle S_{y}\right\rangle=\frac{\hbar}{2}\left[-\frac{\sqrt{2}}{3} e^{i 2 \omega t}-\frac{\sqrt{2}}{3} e^{-i 2 \omega t}\right]=-\frac{\sqrt{2}}{3} \frac{\hbar}{2} 2 \cos (2 \omega t)=-\frac{\sqrt{2}}{3} \hbar \cos (2 \omega t)
\end{gathered}
$$

c) To get the amplitude to have spin up in the x direction, dot with that eigenstate $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$.

$$
\begin{gathered}
P=\left|\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\binom{i \sqrt{\frac{2}{3}} e^{-i \omega t}}{\sqrt{\frac{1}{3}} e^{i \omega t}}\right|^{2}=\left|i \sqrt{\frac{1}{3}} e^{-i \omega t}+\sqrt{\frac{1}{6}} e^{i \omega t}\right|^{2}=\frac{1}{3}+\frac{1}{6}+i \sqrt{\frac{1}{3}} \sqrt{\frac{1}{6}} e^{-2 i \omega t}-i \sqrt{\frac{1}{3}} \sqrt{\frac{1}{6}} e^{2 i \omega t} \\
=\frac{1}{2}+\sqrt{\frac{1}{18}} 2 \sin (2 \omega t)=\frac{1}{2}+\sqrt{\frac{2}{9}} \sin (2 \omega t)
\end{gathered}
$$

2. Consider a two dimensional harmonic oscillator problem described by the Hamiltonian

$$
H_{0}=\frac{p_{x}^{2}+p_{y}^{2}}{2 m}+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)
$$

Remember that this unperturbed problem can be easily solved in Cartessian coordinates. a) Accurately calculate the energy shifts to the degenerate first excited states, to first order, if the additional potential $V=\beta x y$ is applied. b) What are the new energy eigenstates for the degenerate first excited state (in terms of the standard eigenstates $u_{0}^{(x)} u_{1}^{(y)}$ and $\left.u_{1}^{(x)} u_{0}^{(y)}\right)$? (10 points)
As stated in the problem, the degenerate first excited states are $u_{1}^{(x)} u_{0}^{(y)}=|10\rangle$ and $u_{0}^{(x)} u_{1}^{(y)}=$ $|01\rangle$. The excitation in x has the same energy as the excitation in y . The perturbation V can be written in terms of the raising and lowering operators for x and y (which are not the same thing).

$$
V=\beta x y=\frac{\beta \hbar}{2 m \omega}\left(A+A^{\dagger}\right)_{x}\left(A+A^{\dagger}\right)_{y}
$$

We need to compute the 2 by 2 matrix for V for these two states. The only non-zero matrix elements are

$$
\langle 01| V|10\rangle=\langle 10| V|01\rangle=\frac{\beta \hbar}{2 m \omega}\langle 01| A_{(x)} A_{(y)}^{\dagger}|10\rangle=\frac{\beta \hbar}{2 m \omega}
$$

$E_{ \pm}=2 \hbar \omega \pm \frac{\beta \hbar}{2 m \omega}$ for the energy eigenstates $\psi_{ \pm}=\frac{1}{\sqrt{2}}\left(u_{0} u_{1} \pm u_{1} u_{0}\right)$.
3. Two non-identical spin $\frac{1}{2}$ particles have a Hamiltonian given by

$$
H=E_{0}+B \vec{S}_{1} \cdot \vec{S}_{2}+C\left(S_{1 z}+S_{2 z}\right)
$$

There are no spatial coordinates for this problem. Find the allowed energies and the energy eigenstates in terms of the four product states $\chi_{+}^{(1)} \chi_{+}^{(2)}, \chi_{+}^{(1)} \chi_{-}^{(2)}, \chi_{-}^{(1)} \chi_{+}^{(2)}$, and $\chi_{-}^{(1)} \chi_{-}^{(2)}$. (10 points)
The eigenstates of the the total spin operator S^{2} will be the eigenstates of this Hamiltonian since $\overrightarrow{S_{1}} \cdot \overrightarrow{S_{2}}=\frac{1}{2}\left(S^{2}-S_{1}^{2}-S_{2}^{2}\right)$. The energies are $E=E_{0}+B \frac{\hbar^{2}}{2}\left(s(s+1)-\frac{3}{2}\right)+C \hbar m_{s}$ for the states $\left|s m_{s}\right\rangle$.

$$
\begin{array}{rc}
|11\rangle & =\chi_{+} \chi_{+} \\
|1-1\rangle & E_{0}+\frac{B \hbar^{2}}{4}+C \hbar \\
|10\rangle=\chi_{-} \chi_{-} & E_{0}+\frac{B \hbar^{2}}{4}-C \hbar \\
|10\rangle=\frac{1}{\sqrt{2}}\left(\chi_{+} \chi_{-}+\chi_{-} \chi_{+}\right) & E_{0}+\frac{B \hbar^{2}}{4} \\
|00\rangle=\frac{1}{\sqrt{2}}\left(\chi_{+} \chi_{-}-\chi_{-} \chi_{+}\right) & E_{0}-\frac{3 B \hbar^{2}}{4}
\end{array}
$$

