1. A hydrogen atom is in the state $\psi=R_{21} Y_{10} \chi_{-}$. Let $\vec{J}=\vec{L}+\vec{S}$ be the total angular momentum operator; the sum of orbital and spin angular momenta. If a measurement of $J_{z}$ is made, what are the possible outcomes of this measurement and what are the probabilities for each outcome? If a measurement of $J^{2}$ is made, what are the possible outcomes of this measurement and what are the probabilities for each outcome? (10 points)
Solution:
$\hat{J}_{z}=\hat{L}_{z}+\hat{S}_{z}$ here $\hat{J}_{z} \psi=-\frac{\hbar}{2} \psi$, so the outcome of measurement of $J_{z}$ is $-\frac{\hbar}{2}$, the probability is 1 .
$l=1, s=\frac{1}{2}$, so $j=\frac{1}{2}, \frac{3}{2}$, so the outcomes of measurement $J^{2}$ are: $\frac{1}{2} \frac{3}{2} \hbar^{2}=\frac{3}{4} \hbar^{2}$, and $\frac{3}{2} \frac{5}{2} \hbar^{2}=\frac{15}{4} \hbar^{2}$
$\phi_{\frac{3}{2},-\frac{1}{2}}=\phi_{1+\frac{1}{2},-1+\frac{1}{2}}=\sqrt{\frac{1}{3}} Y_{1,-1} \chi_{+}+\sqrt{\frac{2}{3}} Y_{1,0} \chi_{-}$
$\phi_{\frac{1}{2},-\frac{1}{2}}=\phi_{1-\frac{1}{2},-1+\frac{1}{2}}=\sqrt{\frac{2}{3}} Y_{1,-1} \chi_{+}-\sqrt{\frac{1}{3}} Y_{1,0} \chi_{-}$
the probability of $\frac{3}{4} \hbar^{2}$ is $P=\left|<\phi_{\frac{1}{2},-\frac{1}{2}}\right| \psi>\left.\right|^{2}=\frac{1}{3}$
the probability of $\frac{15}{4} \hbar^{2}$ is $P=\left|<\phi_{\frac{3}{2},-\frac{1}{2}}\right| \psi>\left.\right|^{2}=\frac{2}{3}$
2. A harmonic oscillator has a small anharmonic term such that the full Hamiltonian is

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+\lambda x^{4} .
$$

Use perturbation theory to estimate (all) the eigenenergies of the system. (10 points)
Solution:
$H=H_{0}+H_{1}, H_{0}=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}, H_{1}=\lambda x^{4}$.
so $E_{n}^{0}=\left(n+\frac{1}{2}\right) \hbar \omega$
from perturbation theory $E_{n}^{1}=<\phi_{n}^{0}\left|H_{1}\right| \phi_{n}^{0}>=<n\left|\lambda x^{4}\right| n>$
$x=\left(A+A^{\dagger}\right) \sqrt{\frac{\hbar}{2 m \omega}}$
$x^{4}=\left(A+A^{\dagger}\right)^{4} \frac{\hbar^{2}}{4 m^{2} \omega^{2}}$
$\left(A+A^{\dagger}\right)^{4}=\left(A^{2}+A^{\dagger^{2}}+A A^{\dagger}+A^{\dagger} A\right)^{2}=\left(A^{2}+A^{\dagger^{2}}+1+2 A^{\dagger} A\right)^{2}$
$\left.E_{n}^{1}=<n\left|\lambda x^{4}\right| n>=\frac{\hbar^{2} \lambda}{4 m^{2} \omega^{2}}<n\left|\left(A^{2}+A^{\dagger^{2}}+1+2 A^{\dagger} A\right)^{2}\right| n>=\frac{\hbar^{2} \lambda}{4 m^{2} \omega^{2}}<n \right\rvert\,\left(A^{2} A^{\dagger^{2}}+A^{\dagger^{2}} A^{2}+\right.$
$\left.4 A^{\dagger} A A^{\dagger} A+4 A^{\dagger} A+1\right) \mid n>$
$A^{2} A^{\dagger^{2}}=A\left(A^{\dagger} A+1\right) A^{\dagger}=A A^{\dagger} A A^{\dagger}+A A^{\dagger}=\left(A^{\dagger} A+1\right)\left(A^{\dagger}+1\right)+A^{\dagger} A+1=A^{\dagger} A A^{\dagger} A+2 A^{\dagger} A+$
$1+A^{\dagger} A+1$
so $E_{n}^{1}=\frac{\hbar^{2} \lambda}{4 m^{2} \omega^{2}}\left(6 n^{2}+6 n+3\right)$
$E_{n}=E_{n}^{0}+E_{n}^{1}=\left(n+\frac{1}{2}\right) \hbar \omega+\frac{\hbar^{2} \lambda}{4 m^{2} \omega^{2}}\left(6 n^{2}+6 n+3\right)$
3. Consider the problem of a charged particle in an external magnetic in the $z$ direction with the gauge chosen so that $\vec{A}=(-y B, 0,0)$.

- What are the symmetries of this problem and hence what are the constants of the motion?
- Write the Schrödinger equation for this problem.
- Use the constants of the motion to simplify the Schrödinger equation to a differential equation in one variable.
- Write this equation clearly in the form of the Schrödinger equation for a harmonic oscillator.
- Now find the eigenenergies of this equation in terms of one quantum number and the constants of the motion.
(10 points)
Solution:
$\vec{A}=(-y B, 0,0)$
$H=\frac{1}{2 m}\left(\vec{P}-\frac{q}{c} \vec{A}\right)^{2}=\frac{1}{2 m}\left(\left(p_{x}+\frac{q}{c} y B\right)^{2}+p_{y}^{2}+p_{z}^{2}\right)=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+\frac{q^{2}}{c^{2}} y^{2} B^{2}+\frac{2 q}{c} y p_{x} B\right)$
so $\left[H, p_{x}\right]=0,\left[H, p_{z}\right]=0$
$\mathrm{x}, \mathrm{z}$ have translational symmetry, so the constants of motion are $p_{x}, p_{z}$
Schroedinger equation: $E \phi=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+\frac{q^{2}}{c^{2}} y^{2} B^{2}+\frac{2 q}{c} y p_{x} B\right) \phi$
$\phi=u(y) e^{i k_{x} x} e^{i k_{z} z}$
so we get: $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d y^{2}} u(y)+\left(\frac{1}{2} m\left(\frac{q B}{m c}\right)^{2}\right)^{2}\left(-y-\frac{\hbar c k_{x}}{q B}\right)^{2} u(y)=\left(E-\frac{\hbar^{2} k_{z}^{2}}{2 m}\right) u(y)$
this is the same as 1D harmonic oscillator with $\omega=\frac{q B}{m c}$ and $y_{0}=-\frac{\hbar c k_{x}}{q B}$
$E=\left(n+\frac{1}{2}\right) \hbar \omega=\frac{\hbar q B}{m c}\left(n+\frac{1}{2}\right)+\frac{\hbar^{2} k_{z}^{2}}{2 m}$

