
Midterm Oct. 22, 2003 Physics 130B

Name Secret Number

1. A hydrogen atom is in the state  = R21Y10��. Let ~J = ~L+ ~S be the total angular momentum

operator; the sum of orbital and spin angular momenta. If a measurement of Jz is made,

what are the possible outcomes of this measurement and what are the probabilities for each

outcome? If a measurement of J2 is made, what are the possible outcomes of this measurement

and what are the probabilities for each outcome? (10 points)
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2. A harmonic oscillator has a small anharmonic term such that the full Hamiltonian is
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Use perturbation theory to estimate (all) the eigenenergies of the system. (10 points)
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3. Consider the problem of a charged particle in an external magnetic in the z direction with

the gauge chosen so that ~A = (�yB; 0; 0).

� What are the symmetries of this problem and hence what are the constants of the motion?

� Write the Schr�odinger equation for this problem.

� Use the constants of the motion to simplify the Schr�odinger equation to a di�erential

equation in one variable.

� Write this equation clearly in the form of the Schr�odinger equation for a harmonic oscil-

lator.

� Now �nd the eigenenergies of this equation in terms of one quantum number and the

constants of the motion.

(10 points)
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~A = (�yB; 0; 0)

H = 1

2m
(~P �

q

c

~A)2 = 1

2m
((px +

q

c
yB)2 + p2

y
+ p2

z
) = 1

2m
(p2

x
+ p2

y
+ p2

z
+ q

2

c2
y2B2 + 2q

c
ypxB)
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x,z have translational symmetry, so the constants of motion are px, pz
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