Time Dependence of a Gaussian Wave Packet *

Assume we start with our Gaussian (minimum uncertainty) wavepacket \bgroup\color{black}$A(k)=e^{-\alpha (k-k_0)^2}$\egroup at \bgroup\color{black}$t=0$\egroup. We are not interested in careful normalization here so we will drop constants.

\begin{displaymath}\bgroup\color{black}\psi(x,t)=\int\limits_{-\infty}^\infty\; A(k) e^{i(kx-\omega(k)t)}\; dk\egroup\end{displaymath}

We write explicitly that \bgroup\color{black}$w$\egroup depends on \bgroup\color{black}$k$\egroup. For our free particle, this just means that the energy depends on the momentum. To cover the general case, lets expand \bgroup\color{black}$\omega(k)$\egroup around the center of the wave packet in k-space.

\begin{displaymath}\bgroup\color{black}\omega(k)=\omega(k_0)+{d\omega\over dk}\v...
..._0)+{1\over 2}{d^2\omega\over dk^2}\vert _{k_0}(k-k_0)^2\egroup\end{displaymath}

We anticipate the outcome a bit and name the coefficients.

\begin{displaymath}\bgroup\color{black}\omega(k)=\omega_0+v_g (k-k_0)+\beta (k-k_0)^2\egroup\end{displaymath}

We still need to do the integral as before. Make the substitution \bgroup\color{black}$k'=k-k_0$\egroup giving \bgroup\color{black}$A(k')=e^{-\alpha k'^2}$\egroup. Factor out the constant exponential that has no \bgroup\color{black}$k'$\egroup dependence.

\begin{eqnarray*}
\psi(x,t)&=&e^{i(k_0x-w_0t)}\; \int\limits_{-\infty}^\infty\; ...
...y}^\infty\; e^{-[\alpha-i\beta t] k'^2} e^{i(k'x-v_gt)}\; dk'\\
\end{eqnarray*}


We now compare this integral to the one we did earlier (so we can avoid the work of completing the square again). Dropping the constants, we had

\begin{displaymath}\bgroup\color{black}f(x)=e^{ik_0x}\int\limits_{-\infty}^\inft...
...pha k'^2} e^{ik'x} dk'=e^{ik_0x} e^{-{x^2\over 4\alpha}}\egroup\end{displaymath}

Our new integral is the same with the substitutions \bgroup\color{black}$k_0x\rightarrow k_0x-\omega_0t $\egroup, \bgroup\color{black}$k'x\rightarrow k'(x-v_gt)$\egroup, and \bgroup\color{black}$\alpha\rightarrow (\alpha+i\beta t)$\egroup. We can then write down the answer

\begin{eqnarray*}
\psi(x,t)&=&\sqrt{\pi\over\alpha+i\beta t}\; e^{i(k_0x-\omega_...
...^2 t^2}}\; e^{-\alpha(x-v_gt)^2\over 2(\alpha^2+\beta^2 t^2)}\\
\end{eqnarray*}


Jim Branson 2013-04-22