Fourier Transform *

To allow wave functions to extend to infinity, we will expand the interval used

\begin{displaymath}\bgroup\color{black}L\rightarrow \infty .\egroup\end{displaymath}

As we do this we will use the wave number

\begin{displaymath}\bgroup\color{black}k={n\pi\over L}.\egroup\end{displaymath}

As \bgroup\color{black}$L\rightarrow \infty .$\egroup, \bgroup\color{black}$k$\egroup can take on any value, implying we will have a continuous distribution of \bgroup\color{black}$k$\egroup. Our sum over \bgroup\color{black}$n$\egroup becomes an integral over \bgroup\color{black}$k$\egroup.

\begin{displaymath}\bgroup\color{black}dk={\pi\over L}dn.\egroup\end{displaymath}

If we define \bgroup\color{black}$A(k)=\sqrt{2\over\pi}La_n$\egroup, we can make the transform come out with the constants we want.
\bgroup\color{black}$f(x)=\sum\limits_{n=-\infty}^\infty a_ne^{in\pi x\over L}$\egroup Standard Fourier Series
\bgroup\color{black}$a_n={1\over 2L} \int\limits_{-L}^L f(x)e^{-in\pi x\over L}dx$\egroup Standard Fourier Series
\bgroup\color{black}$A_n=\sqrt{2\over\pi}L{1\over 2L} \int\limits_{-L}^L f(x)e^{-in\pi x\over L}dx \qquad$\egroup redefine coefficient
\bgroup\color{black}$A_n={1\over \sqrt{2\pi}} \int\limits_{-L}^L f(x)e^{-in\pi x\over L}dx$\egroup
\bgroup\color{black}$f(x)=\sqrt{\pi\over 2}{1\over L}\sum\limits_{n=-\infty}^\infty A_ne^{in\pi x\over L}$\egroup f stays the same
\bgroup\color{black}$f(x)={\sqrt{\pi}\over\sqrt{2}L} \int\limits_{-\infty}^\infty A(k) e^{ikx} {L\over\pi} dk$\egroup but is rewritten in new A and dk
\bgroup\color{black}$f(x)={1\over\sqrt{2\pi}} \int\limits_{-\infty}^\infty A(k) e^{ikx} dk$\egroup result
\bgroup\color{black}$A(k)={1\over\sqrt{2\pi}} \int\limits_{-\infty}^\infty f(x) e^{-ikx} dx$\egroup result

This is just the extension of the Fourier series to all \bgroup\color{black}$x$\egroup.

If \bgroup\color{black}$f(x)$\egroup is normalized, then \bgroup\color{black}$A(k)$\egroup will also be normalized with this (symmetric) form of the Fourier Transform. Thus, if \bgroup\color{black}$f(x)$\egroup is a probability amplitude in position-space, \bgroup\color{black}$A(k)$\egroup can be a probability amplitude (in k-space).

Jim Branson 2013-04-22