Applying the \bgroup\color{black}$S^2$\egroup Operator to \bgroup\color{black}$\chi_{1m}$\egroup and \bgroup\color{black}$\chi_{00}$\egroup.

We wish to verify that the states we have deduced are really eigenstates of the \bgroup\color{black}$S^2$\egroup operator. We will really compute this in the most brute force.

\begin{eqnarray*}
S^2&=&\left(\vec{S}_1 + \vec{S}_2 \right)^2 = S^2_1+S^2_2+2{\v...
...{(2)}_y + S^{(1)}_z S^{(2)}_z \right) \chi^{(1)}_+ \chi^{(2)}_+
\end{eqnarray*}


\begin{eqnarray*}
S_x \chi_+ &=& {\hbar\over 2}\left(\matrix{0&1\cr 1&0}\right)\...
...\over 2}\left(\matrix{-i\cr 0}\right)=-i{\hbar\over 2}\chi_+ \\
\end{eqnarray*}


\begin{eqnarray*}
S^2 \chi^{(1)}_+ \chi^{(2)}_+ &=& {3\over 2}\hbar^2\chi^{(1)}_...
...^{(1)}_+ \chi^{(2)}_+
= 2 \hbar^2 \chi^{(1)}_+ \chi^{(2)}_+ \\
\end{eqnarray*}


Note that \bgroup\color{black}$s(s+1)=2$\egroup, so that the \bgroup\color{black}$2\hbar$\egroup is what we expected to get. This confirms that we have an s=1 state.

Now lets do the \bgroup\color{black}$\chi_{00}$\egroup state.

\begin{eqnarray*}
S^2 \chi_{00} &=& \left(S^2_1+S^2_2+2{\vec{S}_1\cdot \vec{S}_2...
...) \\
&=& \hbar^2\left(1 -1\right) \chi_{00}= 0\hbar^2\chi_{00}
\end{eqnarray*}




Jim Branson 2013-04-22