Energy States of Electrons in a Plasma I


\begin{displaymath}\bgroup\color{black}-{\hbar^2\over{2 m_e}}\nabla^2\psi + {eB\...
...e^2B^2\over{8 m_e c^2}}\left(x^2+y^2\right)\psi = E\psi \egroup\end{displaymath}

For uniform \bgroup\color{black}$\vec{B}$\egroup field, cylindrical symmetry \bgroup\color{black}$\Rightarrow$\egroup apply cylindrical coordinates \bgroup\color{black}$\rho$\egroup, \bgroup\color{black}$\phi$\egroup, \bgroup\color{black}$z$\egroup. Then

\begin{displaymath}\bgroup\color{black}\nabla^2={\partial^2\over{\partial z^2}} ...
...}}
+ {1\over\rho^2} {\partial^2\over{\partial \phi^2}} \egroup\end{displaymath}

From the symmetry of the problem, we can guess (and verify) that \bgroup\color{black}$[H,p_z]=[H,L_z]=0$\egroup. These variables will be constants of the motion and we therefore choose

\begin{eqnarray*}
\psi\left(\vec{r}\right) &=& u_{mk}\left(\rho\right)e^{im\phi}...
...{1\over\rho} {\partial u\over{\partial \rho}} e^{im\phi}e^{ikz}
\end{eqnarray*}



\begin{displaymath}\bgroup\color{black}{d^2u\over{d\rho^2}} + {1\over\rho}{du\ov...
..._e E\over{\hbar^2}}-{eBm\over{\hbar c}}-k^2\right)u = 0 \egroup\end{displaymath}

Let \bgroup\color{black}$x=\sqrt{eB\over{2\hbar c}}\rho$\egroup (dummy variable, not the coordinate) and \bgroup\color{black}$\lambda={4 m_e c\over{eB\hbar}}\left(E-{\hbar^2k^2\over{2 m_e}}\right)-2m$\egroup. Then

\begin{displaymath}\bgroup\color{black}{d^2u\over{dx^2}} + {1\over x}{du\over{dx}}-{m^2\over{x^2}}u-x^2u+\lambda = 0\egroup\end{displaymath}

In the limit \bgroup\color{black}$x\rightarrow\infty$\egroup,

\begin{displaymath}\bgroup\color{black}{d^2u\over{dx^2}}-x^2u=0\qquad\Rightarrow\qquad u\sim e^{-x^2/2} \egroup\end{displaymath}

while in the other limit \bgroup\color{black}$x\rightarrow 0$\egroup,

\begin{displaymath}\bgroup\color{black}{d^2u\over{dx^2}} + {1\over x}{du\over{dx}}-{m^2\over{x^2}}u = 0\egroup\end{displaymath}

Try a solution of the form \bgroup\color{black}$x^s$\egroup. Then

\begin{displaymath}\bgroup\color{black}s(s-1)x^{s-2} + sx^{s-2} - m^2 x^{s-2} = 0
\qquad\Rightarrow\qquad s^2 = m^2 \egroup\end{displaymath}

A well behaved function \bgroup\color{black}$\Rightarrow$\egroup \bgroup\color{black}$s\geq 0$\egroup \bgroup\color{black}$\Rightarrow$\egroup \bgroup\color{black}$s=\vert m\vert$\egroup

\begin{displaymath}\bgroup\color{black}u(x)=x^{\vert m\vert} e^{-x^2/2} G(x)\egroup\end{displaymath}

Plugging this in, we have

\begin{displaymath}\bgroup\color{black}{d^2G\over{dx^2}}+\left({2\vert m\vert+1\...
...over{dx}}
+ \left(\lambda-2 - 2\vert m\vert\right)G = 0\egroup\end{displaymath}

We can turn this into the hydrogen equation for

\begin{displaymath}\bgroup\color{black}y=x^2\egroup\end{displaymath}

and hence

\begin{displaymath}\bgroup\color{black}dy=2x \hspace{0.05 in} dx\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}{d\over{dy}}={1\over2x}\hspace{0.05 in} {d\over{dx}}.\egroup\end{displaymath}

Transforming the equation we get

\begin{displaymath}\bgroup\color{black}{d^2G\over{dy^2}}+\left({\vert m\vert+1\o...
...r{dy}}
+ {\lambda - 2 - 2\vert m\vert\over{4 y}}G = 0. \egroup\end{displaymath}

Compare this to the equation we had for hydrogen

\begin{displaymath}\bgroup\color{black}{d^2H\over{d\rho^2}}+\left({2\ell+2\over ...
...dH\over{d\rho}}
+ {\lambda - 1 - \ell\over{\rho}}H = 0 \egroup\end{displaymath}

with \bgroup\color{black}$\lambda=n_r+\ell+1$\egroup. The equations are the same if WE set our \bgroup\color{black}${\lambda\over 4}=n_r + {1+\vert m\vert\over 2}\qquad\mbox{where }n_r = 0, 1, 2, \ldots$\egroup. Recall that our \bgroup\color{black}$\lambda={4 m_e c\over{eB\hbar}}\left(E-{\hbar^2k^2\over{2 m_e}}\right)-2m$\egroup. This gives us the energy eigenvalues

\begin{displaymath}\bgroup\color{black}\Rightarrow\qquad E - {\hbar^2k^2\over{2 ...
...{ m_e c}} \left(n_r + {1+\vert m\vert+ m\over 2}\right).\egroup\end{displaymath}

As in Hydrogen, the eigenfunctions are

\begin{displaymath}\bgroup\color{black}G(y)=L_{n_r}^{\vert m\vert}(y).\egroup\end{displaymath}

We can localize electrons in classical orbits for large E and \bgroup\color{black}$n_r\approx 0$\egroup. This is the classical limit.

\begin{displaymath}\bgroup\color{black}n_r=0\qquad\Rightarrow\qquad L_0=\mbox{co...
...row\qquad\vert\psi\vert^2 \sim e^{-x^2}x^{2\vert m\vert}\egroup\end{displaymath}

Max when

\begin{displaymath}\bgroup\color{black}{d\vert\psi\vert^2\over{dx}}= 0 =\left(-2...
...m\vert}+2\vert m\vert e^{-x^2}x^{2\vert m\vert-1}\right)\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}\vert m\vert=x^2\qquad\Rightarrow\qquad\rho=\left({2 c\over{eB}}\hbar m\right)^{1/2}\egroup\end{displaymath}

Now let's put in some numbers: Let \bgroup\color{black}$B\approx 20\mbox{ kGauss}=2\times 10^4\mbox{ Gauss}$\egroup. Then


\begin{displaymath}\bgroup\color{black}\rho = \sqrt{{ 2\left(3\times 10^{10}{\mb...
...ght) }}m}
\approx 2.5\times 10^{-6}\sqrt{m} \mbox{ cm}\egroup\end{displaymath}

This can be compared to the purely classical calculation for an electron with angular momentum \bgroup\color{black}$m\hbar$\egroup which gives \bgroup\color{black}$\rho=\sqrt{m\hbar c\over Be}$\egroup. This simple calculation neglects to count the angular momentum stored in the field.

Jim Branson 2013-04-22