Derive Spin \bgroup\color{black}${1\over 2}$\egroup Rotation Matrices *

In section 18.11.3, we derived the expression for the rotation operator for orbital angular momentum vectors. The rotation operators for internal angular momentum will follow the same formula.

\begin{eqnarray*}
R_z(\theta)&=&e^{i\theta S_z\over\hbar}=e^{i{\theta\over 2}\si...
...{n=0}^\infty {\left({i\theta\over 2}\right)^n\over n!}\sigma_j^n
\end{eqnarray*}


We now can compute the series by looking at the behavior of \bgroup\color{black}$\sigma_j^n$\egroup.

\begin{eqnarray*}
\sigma_z&=&\pmatrix{1 & 0\cr 0 & -1} \qquad \sigma_z^2=\pmatri...
...atrix{0 & 1\cr 1 & 0} \qquad \sigma_x^2=\pmatrix{1 & 0\cr 0 & 1}
\end{eqnarray*}


Doing the sums

\begin{eqnarray*}
R_z(\theta)&=&e^{i{\theta\over 2}\sigma_z}=
\pmatrix{\sum\li...
...\theta\over 2} \cr i\sin{\theta\over 2} & \cos{\theta\over 2} }
\end{eqnarray*}


Note that all of these rotation matrices become the identity matrix for rotations through 720 degrees and are minus the identity for rotations through 360 degrees.



Jim Branson 2013-04-22