Expectation Values in Hydrogen States

An electron in the Coulomb field of a proton is in the state described by the wave function \bgroup\color{black}${1\over 6}(4\psi_{100}+3\psi_{211}-i\psi_{210}+\sqrt{10}\psi_{21-1})$\egroup. Find the expected value of the Energy, \bgroup\color{black}$L^2$\egroup, \bgroup\color{black}$L_z$\egroup, and \bgroup\color{black}$L_y$\egroup.

First check the normalization.

\begin{displaymath}\bgroup\color{black} {\vert 4\vert^2+\vert 3\vert^2+\vert-i\vert^2+\vert\sqrt{10}\vert^2\over 36}={36\over 36}=1 \egroup\end{displaymath}

The terms are eigenstates of \bgroup\color{black}$E$\egroup, \bgroup\color{black}$L^2$\egroup, and \bgroup\color{black}$L_z$\egroup, so we can easily compute expectation values of those operators.

\begin{eqnarray*}
E_n&=&-{1\over 2}\alpha^2\mu c^2{1\over n^2} \\
\langle E\ran...
...a^2\mu c^2{21\over 36}=-{1\over 2}\alpha^2\mu c^2{7\over 12} \\
\end{eqnarray*}


Similarly, we can just square probability amplitudes to compute the expectation value of \bgroup\color{black}$L^2$\egroup. The eigenvalues are \bgroup\color{black}$\ell(\ell+1)\hbar^2$\egroup.

\begin{displaymath}\bgroup\color{black} \langle L^2\rangle=\hbar^2{16 (0)+9(2)+1(2)+10(2)\over 36}={10\over 9}\hbar^2 \egroup\end{displaymath}

The Eigenvalues of \bgroup\color{black}$L_z$\egroup are \bgroup\color{black}$m\hbar$\egroup.

\begin{displaymath}\bgroup\color{black} \langle L_z\rangle=\hbar{16 (0)+9(1)+1(0)+10(-1)\over 36}={-1\over 36}\hbar \egroup\end{displaymath}

Computing the expectation value of \bgroup\color{black}$L_y$\egroup is harder because the states are not eigenstates of \bgroup\color{black}$L_y$\egroup. We must write \bgroup\color{black}$L_y=(L_+ - L_-)/2i$\egroup and compute.

\begin{eqnarray*}
\langle L_y\rangle&=&{1\over 72i}
\langle 4\psi_{100}+3\psi_{...
...qrt{2}\hbar\over 72i}
={(2\sqrt{5}-3\sqrt{2})\hbar\over 36} \\
\end{eqnarray*}


Jim Branson 2013-04-22