Spherical Coordinates and the Angular Momentum Operators

The transformation from spherical coordinates to Cartesian coordinate is.

\begin{eqnarray*}
x&=&r\sin\theta\cos\phi \\
y&=&r\sin\theta\sin\phi \\
z&=&r\cos\theta \\
\end{eqnarray*}


The transformation from Cartesian coordinates to spherical coordinates is.

\begin{eqnarray*}
r&=&\sqrt{x^2+y^2+z^2} \\
\cos\theta&=&{z\over\sqrt{x^2+y^2+z^2}} \\
\tan\phi&=&{y\over x} \\
\end{eqnarray*}


\epsfig{file=figs/spherical.eps,height=2in}

We now proceed to calculate the angular momentum operators in spherical coordinates. The first step is to write the \bgroup\color{black}${\partial\over\partial x_i}$\egroup in spherical coordinates. We use the chain rule and the above transformation from Cartesian to spherical. We have used \bgroup\color{black}$d\cos\theta=-\sin\theta d\theta$\egroup and \bgroup\color{black}$d\tan\phi={1\over\cos^2\phi}d\phi$\egroup. Ultimately all of these should be written in the sperical cooridnates but its convenient to use \bgroup\color{black}$x$\egroup for example in intermediate steps of the calculation.

\begin{eqnarray*}
{\partial\over\partial x}&=&{\partial r\over\partial x}{\part...
...tial r}
-{1\over r}\sin\theta{\partial\over\partial\theta} \\
\end{eqnarray*}


Bringing together the above results, we have.

\begin{eqnarray*}
{\partial\over\partial x}&=&\sin\theta\cos\phi{\partial \over...
...tial r}
-{1\over r}\sin\theta{\partial\over\partial\theta} \\
\end{eqnarray*}


Now simply plug these into the angular momentum formulae.

\begin{eqnarray*}
L_z&=&{\hbar\over i}\left(x{\partial\over\partial y}-y{\parti...
...al \theta}
+i\cot\theta{\partial\over\partial \phi}\right) \\
\end{eqnarray*}


We will use these results to find the actual eigenfunctions of angular momentum.

\begin{eqnarray*}
L_z&=&{\hbar\over i}{\partial\over\partial\phi} \\
L_\pm&=&...
...al \theta}
+i\cot\theta{\partial\over\partial \phi}\right) \\
\end{eqnarray*}


Jim Branson 2013-04-22