Harmonic Oscillator Solution with Operators

We can solve the harmonic oscillator problem using operator methods. We write the Hamiltonian in terms of the operator

\begin{displaymath}\bgroup\color{black}A\equiv \left(\sqrt{m\omega\over2\hbar}x+i{p\over\sqrt{2m\hbar\omega}}\right)\egroup\end{displaymath}

.

\begin{displaymath}\bgroup\color{black}H={p^2\over 2m}+{1\over 2}m\omega^2x^2=\hbar\omega(A^\dagger A+{1\over 2})\egroup\end{displaymath}

We compute the commutators

\begin{displaymath}\bgroup\color{black}[A,A^\dagger]={i\over 2\hbar}(-[x,p]+[p,x])=1 \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}[H,A]=\hbar\omega[A^\dagger A,A]=\hbar\omega[A^\dagger,A]A=-\hbar\omega A\egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black}[H,A^\dagger]=\hbar\omega[A^\dagger A,A^\...
...\hbar\omega A^\dagger[A,A^\dagger]=\hbar\omega A^\dagger\egroup\end{displaymath}

If we apply the the commutator \bgroup\color{black}$[H,A]$\egroup to the eigenfunction \bgroup\color{black}$u_n$\egroup, we get \bgroup\color{black}$[H,A]u_n=-\hbar\omega Au_n$\egroup which rearranges to the eigenvalue equation

\begin{displaymath}\bgroup\color{black}H(Au_n)=(E_n-\hbar\omega)(Au_n).\egroup\end{displaymath}

This says that \bgroup\color{black}$(Au_n)$\egroup is an eigenfunction of \bgroup\color{black}$H$\egroup with eigenvalue \bgroup\color{black}$(E_n-\hbar\omega)$\egroup so it lowers the energy by \bgroup\color{black}$\hbar\omega$\egroup. Since the energy must be positive for this Hamiltonian, the lowering must stop somewhere, at the ground state, where we will have

\begin{displaymath}\bgroup\color{black}Au_0=0.\egroup\end{displaymath}

This allows us to compute the ground state energy like this

\begin{displaymath}\bgroup\color{black}Hu_0=\hbar\omega(A^\dagger A+{1\over 2})u_0={1\over 2}\hbar\omega u_0\egroup\end{displaymath}

showing that the ground state energy is \bgroup\color{black}${1\over 2}\hbar\omega$\egroup. Similarly, \bgroup\color{black}$A^\dagger$\egroup raises the energy by \bgroup\color{black}$\hbar\omega$\egroup. We can travel up and down the energy ladder using \bgroup\color{black}$A^\dagger$\egroup and \bgroup\color{black}$A$\egroup, always in steps of \bgroup\color{black}$\hbar\omega$\egroup. The energy eigenvalues are therefore

\begin{displaymath}\bgroup\color{black}E_n=\left(n+{1\over 2}\right)\hbar\omega.\egroup\end{displaymath}

A little more computation shows that

\begin{displaymath}\bgroup\color{black}Au_n=\sqrt{n}u_{n-1}\egroup\end{displaymath}

and that

\begin{displaymath}\bgroup\color{black}A^\dagger u_n=\sqrt{n+1}u_{n+1}.\egroup\end{displaymath}

These formulas are useful for all kinds of computations within the important harmonic oscillator system. Both \bgroup\color{black}$p$\egroup and \bgroup\color{black}$x$\egroup can be written in terms of \bgroup\color{black}$A$\egroup and \bgroup\color{black}$A^\dagger$\egroup.

\begin{displaymath}\bgroup\color{black} x=\sqrt{\hbar\over 2m\omega}(A+A^\dagger) \egroup\end{displaymath}


\begin{displaymath}\bgroup\color{black} p=-i\sqrt{m\hbar\omega\over 2}(A-A^\dagger) \egroup\end{displaymath}

Jim Branson 2013-04-22